EXIF-Metadaten für jedes BMP Bild anzeigen
Ziehen und ablegen oder klicken, um auszuwählen
Privat und sicher
Alles passiert in Ihrem Browser. Ihre Dateien berühren niemals unsere Server.
Blitzschnell
Kein Hochladen, kein Warten. Konvertieren Sie, sobald Sie eine Datei ablegen.
Wirklich kostenlos
Kein Konto erforderlich. Keine versteckten Kosten. Keine Tricks bei der Dateigröße.
EXIF (Exchangeable Image File Format) ist ein Block von Metadaten wie Belichtung, Objektiv, Zeitstempel und sogar GPS-Daten, die von Kameras und Telefonen in Bilddateien eingebettet werden. Es verwendet ein TIFF-ähnliches Tag-System, das in Formaten wie JPEG und TIFF verpackt ist. Dies ist für die Suche, Sortierung und Automatisierung in Fotobibliotheken unerlässlich, kann aber bei unachtsamer Weitergabe auch zu unbeabsichtigten Datenlecks führen (ExifTool und Exiv2 erleichtern die Überprüfung).
Auf niedriger Ebene verwendet EXIF die Image File Directory (IFD)-Struktur von TIFF wieder und befindet sich in JPEG innerhalb des APP1-Markers (0xFFE1), wodurch ein kleines TIFF-Bild effektiv in einem JPEG-Container verschachtelt wird (JFIF-Übersicht; CIPA-Spezifikationsportal). Die offizielle Spezifikation – CIPA DC-008 (EXIF), derzeit bei 3.x – dokumentiert das IFD-Layout, die Tag-Typen und Einschränkungen (CIPA DC-008; Spezifikationszusammenfassung). EXIF definiert ein dediziertes GPS-Sub-IFD (Tag 0x8825) und ein Interoperabilitäts-IFD (0xA005) (Exif-Tag-Tabellen).
Implementierungsdetails sind wichtig. Typische JPEGs beginnen mit einem JFIF-APP0-Segment, gefolgt von EXIF in APP1. Ältere Lesegeräte erwarten zuerst JFIF, während moderne Bibliotheken beide Formate problemlos parsen (APP-Segment-Hinweise). In der Praxis gehen Parser manchmal von einer APP-Reihenfolge oder Größenbeschränkungen aus, die die Spezifikation nicht vorschreibt, weshalb die Entwickler von Werkzeugen spezifische Verhaltensweisen und Grenzfälle dokumentieren (Exiv2-Metadaten-Leitfaden; ExifTool-Dokumentation).
EXIF ist nicht auf JPEG/TIFF beschränkt. Das PNG-Ökosystem standardisierte den eXIf-Chunk, um EXIF-Daten in PNG-Dateien zu transportieren (die Unterstützung wächst, und die Chunk-Reihenfolge relativ zu IDAT kann in einigen Implementierungen von Bedeutung sein). WebP, ein RIFF-basiertes Format, nimmt EXIF, XMP und ICC in dedizierten Chunks auf (WebP-RIFF-Container; libwebp). Auf Apple-Plattformen bewahrt Image I/O EXIF-Daten bei der Konvertierung in HEIC/HEIF zusammen mit XMP-Daten und Herstellerinformationen (kCGImagePropertyExifDictionary).
Wenn Sie sich jemals gefragt haben, wie Apps Kameraeinstellungen ableiten, ist die EXIF-Tag-Map die Antwort: Make, Model,FNumber, ExposureTime, ISOSpeedRatings, FocalLength, MeteringMode, und mehr befinden sich in den primären und EXIF-Sub-IFDs (Exif-Tags; Exiv2-Tags). Apple stellt diese über Image I/O-Konstanten wie ExifFNumber und GPSDictionary zur Verfügung. Unter Android liest/schreibt AndroidX ExifInterface EXIF-Daten über JPEG, PNG, WebP und HEIF hinweg.
Ausrichtung, Zeit und andere Tücken
Die Ausrichtung verdient besondere Erwähnung. Die meisten Geräte speichern Pixel „wie aufgenommen“ und zeichnen ein Tag auf, das den Betrachtern mitteilt, wie sie bei der Anzeige gedreht werden sollen. Das ist Tag 274 (Orientation) mit Werten wie 1 (normal), 6 (90° im Uhrzeigersinn), 3 (180°), 8 (270°). Die Nichtbeachtung oder fehlerhafte Aktualisierung dieses Tags führt zu seitlichen Fotos, nicht übereinstimmenden Miniaturansichten und Fehlern beim maschinellen Lernen in nachfolgenden Verarbeitungsschritten (Ausrichtungs-Tag;praktische Anleitung). In Verarbeitungsprozessen wird oft eine Normalisierung vorgenommen, indem Pixel physisch gedreht und Orientation=1 gesetzt wird (ExifTool).
Die Zeitmessung ist kniffliger, als es aussieht. Historische Tags wie DateTimeOriginal haben keine Zeitzone, was grenzüberschreitende Aufnahmen mehrdeutig macht. Neuere Tags fügen Zeitzoneninformationen hinzu – z. B. OffsetTimeOriginal – damit Software DateTimeOriginal plus einen UTC-Offset (z. B. -07:00) für eine korrekte Sortierung und Geokorrelation aufzeichnen kann (OffsetTime*-Tags;Tag-Übersicht).
EXIF vs. IPTC vs. XMP
EXIF koexistiert – und überschneidet sich manchmal – mit IPTC-Fotometadaten (Titel, Ersteller, Rechte, Motive) und XMP, Adobes RDF-basiertem Framework, das als ISO 16684-1 standardisiert ist. In der Praxis gleicht korrekt implementierte Software von der Kamera erstellte EXIF-Daten mit vom Benutzer erstellten IPTC/XMP-Daten ab, ohne eines von beiden zu verwerfen (IPTC-Anleitung;LoC zu XMP;LoC zu EXIF).
Datenschutz und Sicherheit
Datenschutzfragen machen EXIF zu einem kontroversen Thema. Geotags und Geräteseriennummern haben mehr als einmal sensible Orte preisgegeben; ein bekanntes Beispiel ist dasVice-Foto von John McAfee aus dem Jahr 2012, bei dem EXIF-GPS-Koordinaten angeblich seinen Aufenthaltsort verrieten (Wired;The Guardian). Viele soziale Plattformen entfernen die meisten EXIF-Daten beim Hochladen, aber die Implementierungen variieren und ändern sich im Laufe der Zeit. Es ist ratsam, dies zu überprüfen, indem Sie Ihre eigenen Beiträge herunterladen und sie mit einem entsprechenden Tool untersuchen (Twitter-Medienhilfe;Facebook-Hilfe;Instagram-Hilfe).
Sicherheitsforscher beobachten auch EXIF-Parser genau. Schwachstellen in weit verbreiteten Bibliotheken (z. B. libexif) umfassten Pufferüberläufe und Out-of-Bounds-Lesevorgänge, die durch fehlerhafte Tags ausgelöst wurden. Diese sind leicht zu erstellen, da EXIF ein strukturiertes Binärformat an einem vorhersagbaren Ort ist (Hinweise;NVD-Suche). Es ist wichtig, Ihre Metadatenbibliotheken auf dem neuesten Stand zu halten und Bilder in einer isolierten Umgebung (Sandbox) zu verarbeiten, wenn sie aus nicht vertrauenswürdigen Quellen stammen.
Praktische Tipps
- Verwalten Sie Standortinformationen bewusst: Deaktivieren Sie das Geotagging der Kamera gegebenenfalls oder entfernen Sie GPS-Daten beim Export. Bewahren Sie ein privates Original auf, wenn Sie die Daten später benötigen (ExifTool;Exiv2 CLI).
- Normalisieren Sie die Ausrichtung und Zeitstempel in den Verarbeitungsprozessen, idealerweise durch Schreiben der physischen Drehung und Entfernen mehrdeutiger Tags (oder Hinzufügen von OffsetTime*). (Ausrichtung;OffsetTime*).
- Bewahren Sie beschreibende Metadaten (Credits/Rechte) auf, indem Sie EXIF↔IPTC↔XMP gemäß den aktuellen IPTC-Richtlinien zuordnen und XMP für reichhaltige, erweiterbare Felder bevorzugen.
- Überprüfen Sie bei PNG/WebP/HEIF, ob Ihre Bibliotheken die modernen EXIF/XMP-Speicherorte tatsächlich lesen/schreiben; gehen Sie nicht von einer Parität mit JPEG aus (PNG eXIf;WebP-Container;Image I/O).
- Halten Sie Abhängigkeiten auf dem neuesten Stand, da Metadaten ein häufiges Ziel für Angriffe auf Parser sind (libexif-Hinweise).
Sorgfältig verwendet, ist EXIF ein Schlüsselelement, das Fotokataloge, Rechte-Workflows und Computer-Vision-Pipelines antreibt. Naiv verwendet, wird es zu einer digitalen Spur, die Sie möglicherweise nicht hinterlassen möchten. Die gute Nachricht: Das Ökosystem – Spezifikationen, Betriebssystem-APIs und Tools – gibt Ihnen die Kontrolle, die Sie benötigen (CIPA EXIF;ExifTool;Exiv2;IPTC;XMP).
Weiterführende Literatur & Referenzen
- CIPA EXIF DC-008 (Spezifikationsportal)
- ExifTool-Tag-Referenz (EXIF) • JPEG-APP-Segmente
- Exiv2-Tag-Referenz • Metadaten-Übersicht
- PNG: eXIf-Zusatz-Chunk
- WebP-RIFF-Container & Metadaten
- Apple Image I/O • kCGImagePropertyExifDictionary
- AndroidX ExifInterface
- IPTC-Fotometadaten
- Adobe XMP (ISO 16684-1)
- Library of Congress: EXIF-Format • Library of Congress: XMP
- libexif-Sicherheitshinweise • NVD: libexif
- Wired über den McAfee-EXIF-Vorfall
Häufig gestellte Fragen
Was sind EXIF-Daten?
EXIF-Daten (Exchangeable Image File Format) sind eine Sammlung von Metadaten zu einem Foto, wie Kameraeinstellungen, Aufnahmezeitpunkt und, bei aktiviertem GPS, auch der Standort.
Wie kann ich EXIF-Daten anzeigen?
Die meisten Bildbetrachter und -editoren (z. B. Adobe Photoshop, Windows Fotoanzeige) ermöglichen die Anzeige von EXIF-Daten. In der Regel genügt es, das Eigenschaften- oder Informationsfenster der Datei zu öffnen.
Können EXIF-Daten bearbeitet werden?
Ja, EXIF-Daten können mit spezieller Software wie Adobe Photoshop, Lightroom oder einfach zu bedienenden Online-Tools bearbeitet werden. Damit lassen sich bestimmte Metadatenfelder anpassen oder löschen.
Stellen EXIF-Daten ein Datenschutzrisiko dar?
Ja. Bei aktiviertem GPS können in den EXIF-Metadaten gespeicherte Standortdaten sensible geografische Informationen preisgeben. Es wird daher empfohlen, diese Daten vor der Weitergabe von Fotos zu entfernen oder zu anonymisieren.
Wie kann ich EXIF-Daten entfernen?
Viele Programme ermöglichen das Entfernen von EXIF-Daten. Dieser Vorgang wird oft als 'Metadaten-Stripping' bezeichnet. Es gibt auch Online-Tools, die diese Funktion anbieten.
Behalten soziale Netzwerke EXIF-Daten?
Die meisten sozialen Netzwerke wie Facebook, Instagram und Twitter entfernen EXIF-Daten automatisch von Bildern, um die Privatsphäre der Nutzer zu schützen.
Welche Informationen enthalten EXIF-Daten?
EXIF-Daten können unter anderem das Kameramodell, Datum und Uhrzeit der Aufnahme, Brennweite, Belichtungszeit, Blende, ISO-Einstellung, Weißabgleich und den GPS-Standort enthalten.
Warum sind EXIF-Daten für Fotografen nützlich?
Für Fotografen sind EXIF-Daten eine wertvolle Hilfe, um die genauen Einstellungen einer Aufnahme zu verstehen. Diese Informationen helfen, Techniken zu verbessern und ähnliche Bedingungen in Zukunft zu reproduzieren.
Enthalten alle Bilder EXIF-Daten?
Nein, nur Bilder, die mit Geräten aufgenommen wurden, die EXIF-Metadaten unterstützen, wie Digitalkameras und Smartphones, enthalten diese Daten.
Gibt es ein Standardformat für EXIF-Daten?
Ja, EXIF-Daten folgen dem von der Japan Electronic Industries Development Association (JEIDA) festgelegten Standard. Einige Hersteller können jedoch zusätzliche, proprietäre Informationen hinzufügen.
Was ist das BMP Format?
Microsoft Windows Bitmap-Bild
Das BGRO-Dateiformat, das als Leuchtturm für die spezialisierte Datenspeicherung und -abfrage steht, verkörpert eine umfassende Methodik zur Aufbewahrung komplexer Datensätze, die vor allem in Bereichen wie Geografischen Informationssystemen (GIS), Meteorologie und fortschrittlichen Bildgebungstechniken zum Einsatz kommt. Mit dem Fortschritt der digitalen Technologie hat die Bedeutung effizienter, skalierbarer und sicherer Datenformate zugenommen. BGRO, kurz für Binary Geospatial Representation and Optimization, bietet eine Lösung, die auf Kontexte mit hoher Datendichte zugeschnitten ist, in denen Präzision und Geschwindigkeit von größter Bedeutung sind. Diese Erläuterung zielt darauf ab, die technischen Feinheiten des BGRO-Dateiformats zu entmystifizieren und Einblicke in seine Konstruktionsprinzipien, seine Struktur und seine Betriebsmechanismen sowie seine komparativen Vorteile und potenziellen Anwendungen zu geben.
Im Kern nutzt das BGRO-Dateiformat die binäre Kodierung, um sowohl die Speichereffizienz als auch die Geschwindigkeit der Datenabfrage zu maximieren. Binäre Formate sind von Natur aus kompakter als ihre textuellen Gegenstücke wie XML oder JSON, da sie direkt in maschinenlesbarer Form dargestellt werden. BGRO baut auf dieser Prämisse auf, indem es ein Schema implementiert, das Redundanz minimiert und einen schnellen Zugriff auf räumliche Datenkomponenten ermöglicht. Seine Architektur ist darauf ausgelegt, räumliche Abfragen zu optimieren, was es zu einer idealen Wahl für Anwendungen macht, die einen häufigen Zugriff auf georäumliche Datenebenen erfordern, darunter topografische Modelle, Satellitenbilder und Datenbanken für die Stadtplanung.
Die Struktur einer BGRO-Datei ist sorgfältig in Abschnitte organisiert, die verschiedene Arten von Daten und Metadaten unterteilen. Der Header-Abschnitt enthält wichtige Informationen über die Datei, einschließlich der Version des BGRO-Formats, des Erstellungsdatums und Details über das verwendete Koordinatensystem. Darauf folgt ein Abschnitt zur Schemadefinition, der die Struktur der nachfolgenden Dateneinträge skizziert und Datentypen und ihre entsprechenden Attribute angibt. Der Großteil der BGRO-Datei besteht aus den Dateneinträgen selbst, die in einem binären Format kodiert sind. Diese Einträge können eine Vielzahl von georäumlichen Datentypen darstellen, von einfachen Punktkoordinaten bis hin zu komplexen Multipolygongeometrien. Es folgt ein Indexabschnitt, der einen Mechanismus für eine schnelle Datenabfrage bereitstellt, der für die effiziente Verarbeitung großer Datensätze unerlässlich ist.
Ein charakteristisches Merkmal des BGRO-Formats ist die Verwendung ausgefeilter Indexierungstechniken wie R-Bäume, um die Datenabfragegeschwindigkeit zu erhöhen. R-Bäume, eine Art hierarchischer Baumdatenstruktur, eignen sich aufgrund ihrer Fähigkeit, mehrdimensionale Informationen effizient zu organisieren und zu durchsuchen, besonders gut für räumliche Daten. In BGRO-Dateien werden R-Bäume verwendet, um räumliche Entitäten zu indizieren, was eine schnelle Abfrage und Aktualisierung von georäumlichen Daten ermöglicht. Diese Indexierungsstruktur ist besonders vorteilhaft für dynamische Datensätze, in denen Datenelemente häufig hinzugefügt, entfernt oder geändert werden können, da sie eine gleichbleibende Leistung trotz Schwankungen in Datenvolumen und -komplexität gewährleistet.
Komprimierungstechniken spielen auch eine entscheidende Rolle im BGRO-Dateiformat und helfen dabei, die Dateigröße zu reduzieren, ohne die Datenintegrität zu beeinträchtigen. BGRO verwendet eine Kombination aus verlustfreien Komprimierungsalgorithmen, um die Binärdaten weiter zu verdichten, was erhebliche Einsparungen an Speicherplatz ermöglicht. Diese Komprimierungsalgorithmen werden sorgfältig ausgewählt, um sicherzustellen, dass sie die Qualität der georäumlichen Daten nicht beeinträchtigen, ein entscheidender Aspekt für Anwendungen, die ein hohes Maß an Genauigkeit erfordern, wie z. B. Umweltmodellierung und Präzisionslandwirtschaft. Durch den Einsatz effektiver Komprimierung können BGRO-Dateien ein Gleichgewicht zwischen kompakten Dateigrößen und der Beibehaltung detaillierter, originalgetreuer georäumlicher Daten aufrechterhalten.
Interoperabilität ist ein weiteres Markenzeichen des BGRO-Dateiformats, das für eine nahtlose Integration mit einer Vielzahl von Softwareanwendungen und -systemen konzipiert wurde. Dies wird durch die Einhaltung etablierter georäumlicher Datenstandards und -protokolle erreicht, wodurch sichergestellt wird, dass BGRO-Dateien problemlos über verschiedene GIS-Plattformen, Datenbanken und Analysetools hinweg importiert und exportiert werden können. Eine solche Interoperabilität ist im Kontext von kollaborativen Projekten und multidisziplinärer Forschung von entscheidender Bedeutung, wo Daten möglicherweise von verschiedenen Interessengruppen unter Verwendung einer Vielzahl von Softwareumgebungen gemeinsam genutzt und verarbeitet werden müssen.
Sicherheits- und Datenintegritätsmaßnahmen sind tief in die Architektur des BGRO-Formats eingebettet und spiegeln die kritische Natur der Daten wider, die oft in diesen Dateien enthalten sind. Funktionen wie Verschlüsselung und digitale Signaturen werden implementiert, um sensible Informationen zu schützen, unbefugten Zugriff zu bekämpfen und die Datenauthentizität sicherzustellen. Dies ist besonders wichtig für Datensätze, die private oder geschützte Informationen enthalten, oder für solche, die in wichtigen Entscheidungsprozessen verwendet werden. Durch die Einbettung fortschrittlicher Sicherheitsprotokolle direkt in das Dateiformat bietet BGRO einen robusten Rahmen für die sichere Handhabung und Speicherung sensibler georäumlicher Daten.
Anpassbarkeit ist eine weitere Stärke von BGRO und bietet Benutzern die Möglichkeit, das Format an spezifische Projektanforderungen anzupassen. Durch die Verwendung benutzerdefinierter Schemadefinitionen können Benutzer eindeutige Datenstrukturen definieren, nicht standardmäßige Datentypen aufnehmen und spezielle Indexierungsstrategien implementieren. Dieser Grad an Anpassbarkeit unterstützt eine Vielzahl von Anwendungen, von maßgeschneiderten Kartierungsprojekten bis hin zu komplexen Simulationsmodellen, und ermöglicht die Optimierung von BGRO-Dateien für spezifische Datenmerkmale und Zugriffsmuster.
Trotz seiner vielen Vorteile ist das BGRO-Dateiformat nicht ohne Herausforderungen und Einschränkungen. Eine solche Herausforderung ist die Lernkurve, die mit der Beherrschung seiner technischen Komplexität verbunden ist, insbesondere für diejenigen, die mit binären Dateiformaten oder fortgeschrittenen georäumlichen Datenprinzipien noch nicht vertraut sind. Darüber hinaus kann die Fokussierung des Formats auf Effizienz und Präzision seine Eignung für weniger spezialisierte Anwendungen oder solche einschränken, bei denen Einfachheit und Benutzerfreundlichkeit Vorrang vor Leistung haben.
Die Entwicklung und Einführung von BGRO unterstreicht auch die Bedeutung laufender Forschung und Innovation im Bereich des Geodatenmanagements. Mit der Weiterentwicklung der Technologie und dem wachsenden Volumen und der Vielfalt räumlicher Daten müssen sich Formate wie BGRO anpassen, um neue Datentypen aufzunehmen, Fortschritte in Komprimierungs- und Indexierungstechnologien zu integrieren und sich in neue Standards und Plattformen zu integrieren. Diese Anpassungsfähigkeit ist unerlässlich, um sicherzustellen, dass das BGRO-Dateiformat relevant bleibt und weiterhin den Bedürfnissen seiner vielfältigen Benutzerbasis effektiv gerecht wird.
In der Praxis erfordert die Implementierung von BGRO in Projekten oder Systemen ein differenziertes Verständnis seiner Struktur und Fähigkeiten. Anwendungsentwickler und GIS-Experten müssen Faktoren wie die Art ihrer räumlichen Daten, die Leistungsanforderungen ihrer Systeme und die spezifischen Vorteile berücksichtigen, die BGRO gegenüber anderen Dateiformaten bietet. Die effektive Nutzung von BGRO beinhaltet oft die Nutzung seiner Indexierungs- und Komprimierungsfunktionen, um die Leistung zu maximieren, während gleichzeitig die Kompromisse in Bezug auf Dateigröße, Datentreue und Systemkomplexität berücksichtigt werden.
Mit Blick auf die Zukunft ist die Zukunft des BGRO-Dateiformats an der Schnittstelle mehrerer dynamischer Sektoren angesiedelt, darunter Big-Data-Analyse, Cloud-Computing und künstliche Intelligenz. Die Fähigkeit von BGRO, große, komplexe Datensätze mit hoher Effizienz zu verarbeiten, macht es zu einer attraktiven Option für Anwendungen der nächsten Generation, die eine schnelle Verarbeitung und Analyse von georäumlichen Informationen erfordern. Da Cloud-basierte GIS-Plattformen und KI-gestützte Werkzeuge für die räumliche Analyse immer häufiger eingesetzt werden, werden die Stärken des BGRO-Formats in Bezug auf Geschwindigkeit, Skalierbarkeit und Interoperabilität wahrscheinlich eine zentrale Rolle dabei spielen, diesen Technologien zu ermöglichen, ihr Potenzial auszuschöpfen.
Zusammenfassend lässt sich sagen, dass das BGRO-Dateiformat einen hochentwickelten Ansatz für die Speicherung und Abfrage von georäumlichen Daten darstellt, der Effizienz, Genauigkeit und Flexibilität auf eine Weise vereint, die den einzigartigen Herausforderungen der Verwaltung großer räumlicher Datensätze gerecht wird. Seine Konstruktionsprinzipien, die auf binäre Effizienz, fortschrittliche Indexierung und strenge Datenintegrität ausgerichtet sind, positionieren BGRO als eine überzeugende Wahl für ein breites Spektrum von Anwendungen, von der Umweltüberwachung bis zur Stadtplanung. Da sich die digitale Landschaft ständig weiterentwickelt, wird die laufende Entwicklung und Verfeinerung des BGRO-Dateiformats entscheidend dafür sein, dass es an der Spitze der Geodatentechnologie bleibt.
Unterstützte Formate
AAI.aai
AAI Dune Bild
AI.ai
Adobe Illustrator CS2
AVIF.avif
AV1 Bildformat
BAYER.bayer
Rohes Bayer-Bild
BMP.bmp
Microsoft Windows Bitmap-Bild
CIN.cin
Cineon-Bilddatei
CLIP.clip
Bild-Clip-Maske
CMYK.cmyk
Rohcyan-, Magenta-, Gelb- und Schwarzproben
CUR.cur
Microsoft-Symbol
DCX.dcx
ZSoft IBM PC mehrseitige Paintbrush
DDS.dds
Microsoft DirectDraw-Oberfläche
DPX.dpx
SMTPE 268M-2003 (DPX 2.0) Bild
DXT1.dxt1
Microsoft DirectDraw-Oberfläche
EPDF.epdf
Eingekapseltes tragbares Dokumentenformat
EPI.epi
Adobe Encapsulated PostScript Interchange-Format
EPS.eps
Adobe Encapsulated PostScript
EPSF.epsf
Adobe Encapsulated PostScript
EPSI.epsi
Adobe Encapsulated PostScript Interchange-Format
EPT.ept
Eingekapseltes PostScript mit TIFF-Vorschau
EPT2.ept2
Eingekapseltes PostScript Level II mit TIFF-Vorschau
EXR.exr
Bild mit hohem Dynamikbereich (HDR)
FF.ff
Farbfeld
FITS.fits
Flexibles Bildtransport-System
GIF.gif
CompuServe-Grafikaustauschformat
HDR.hdr
Bild mit hohem Dynamikbereich (HDR)
HEIC.heic
Hocheffizienter Bildcontainer
HRZ.hrz
Slow Scan TeleVision
ICO.ico
Microsoft-Symbol
ICON.icon
Microsoft-Symbol
J2C.j2c
JPEG-2000 Codestream
J2K.j2k
JPEG-2000 Codestream
JNG.jng
JPEG Network Graphics
JP2.jp2
JPEG-2000 Dateiformat Syntax
JPE.jpe
Joint Photographic Experts Group JFIF-Format
JPEG.jpeg
Joint Photographic Experts Group JFIF-Format
JPG.jpg
Joint Photographic Experts Group JFIF-Format
JPM.jpm
JPEG-2000 Dateiformat Syntax
JPS.jps
Joint Photographic Experts Group JPS-Format
JPT.jpt
JPEG-2000 Dateiformat Syntax
JXL.jxl
JPEG XL-Bild
MAP.map
Multi-Resolution Seamless Image Database (MrSID)
MAT.mat
MATLAB-Level-5-Bildformat
PAL.pal
Palm-Pixmap
PALM.palm
Palm-Pixmap
PAM.pam
Allgemeines zweidimensionales Bitmap-Format
PBM.pbm
Portable Bitmap-Format (schwarz-weiß)
PCD.pcd
Photo-CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
Palm Database ImageViewer-Format
PDF.pdf
Portable Document Format
PDFA.pdfa
Portable Document Archive-Format
PFM.pfm
Portable Float-Format
PGM.pgm
Portable Graymap-Format (Graustufen)
PGX.pgx
JPEG-2000 unkomprimiertes Format
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
Joint Photographic Experts Group JFIF-Format
PNG.png
Portable Network Graphics
PNG00.png00
PNG mit Bit-Tiefe und Farbtyp vom Originalbild erben
PNG24.png24
Opakes oder binäres transparentes 24-Bit-RGB (zlib 1.2.11)
PNG32.png32
Opakes oder binäres transparentes 32-Bit-RGBA
PNG48.png48
Opakes oder binäres transparentes 48-Bit-RGB
PNG64.png64
Opakes oder binäres transparentes 64-Bit-RGBA
PNG8.png8
Opakes oder binäres transparentes 8-Bit-Indexed
PNM.pnm
Portable Anymap
PPM.ppm
Portable Pixmap-Format (Farbe)
PS.ps
Adobe PostScript-Datei
PSB.psb
Adobe Large Document-Format
PSD.psd
Adobe Photoshop-Bitmap
RGB.rgb
Rohdaten für rote, grüne und blaue Proben
RGBA.rgba
Rohdaten für rote, grüne, blaue und Alpha-Proben
RGBO.rgbo
Rohdaten für rote, grüne, blaue und Opazität-Proben
SIX.six
DEC SIXEL-Grafikformat
SUN.sun
Sun Rasterfile
SVG.svg
Skalierbare Vektorgrafiken
TIFF.tiff
Tagged Image File Format
VDA.vda
Truevision-Targa-Bild
VIPS.vips
VIPS-Bild
WBMP.wbmp
Wireless Bitmap (Level 0) Bild
WEBP.webp
WebP-Bildformat
YUV.yuv
CCIR 601 4:1:1 oder 4:2:2
Häufig gestellte Fragen
Wie funktioniert das?
Dieser Konverter läuft vollständig in Ihrem Browser. Wenn Sie eine Datei auswählen, wird sie in den Speicher gelesen und in das ausgewählte Format konvertiert. Sie können die konvertierte Datei dann herunterladen.
Wie lange dauert die Konvertierung einer Datei?
Die Konvertierung beginnt sofort, und die meisten Dateien werden in weniger als einer Sekunde konvertiert. Größere Dateien können länger dauern.
Was passiert mit meinen Dateien?
Ihre Dateien werden niemals auf unsere Server hochgeladen. Sie werden in Ihrem Browser konvertiert, und die konvertierte Datei wird dann heruntergeladen. Wir sehen Ihre Dateien niemals.
Welche Dateitypen kann ich konvertieren?
Wir unterstützen die Konvertierung zwischen allen Bildformaten, einschließlich JPEG, PNG, GIF, WebP, SVG, BMP, TIFF und mehr.
Wie viel kostet das?
Dieser Konverter ist völlig kostenlos und wird immer kostenlos sein. Da er in Ihrem Browser läuft, müssen wir nicht für Server bezahlen, also müssen wir Ihnen auch nichts berechnen.
Kann ich mehrere Dateien auf einmal konvertieren?
Ja! Sie können so viele Dateien auf einmal konvertieren, wie Sie möchten. Wählen Sie einfach mehrere Dateien aus, wenn Sie sie hinzufügen.