EXIF-Metadaten für jedes RGBO Bild anzeigen

Unbegrenzte Bilder. Dateigrößen bis zu 2,5 GB. Kostenlos, für immer.

Privat und sicher

Alles passiert in Ihrem Browser. Ihre Dateien berühren niemals unsere Server.

Blitzschnell

Kein Hochladen, kein Warten. Konvertieren Sie, sobald Sie eine Datei ablegen.

Wirklich kostenlos

Kein Konto erforderlich. Keine versteckten Kosten. Keine Tricks bei der Dateigröße.

EXIF (Exchangeable Image File Format) ist ein Block von Metadaten wie Belichtung, Objektiv, Zeitstempel und sogar GPS-Daten, die von Kameras und Telefonen in Bilddateien eingebettet werden. Es verwendet ein TIFF-ähnliches Tag-System, das in Formaten wie JPEG und TIFF verpackt ist. Dies ist für die Suche, Sortierung und Automatisierung in Fotobibliotheken unerlässlich, kann aber bei unachtsamer Weitergabe auch zu unbeabsichtigten Datenlecks führen (ExifTool und Exiv2 erleichtern die Überprüfung).

Auf niedriger Ebene verwendet EXIF die Image File Directory (IFD)-Struktur von TIFF wieder und befindet sich in JPEG innerhalb des APP1-Markers (0xFFE1), wodurch ein kleines TIFF-Bild effektiv in einem JPEG-Container verschachtelt wird (JFIF-Übersicht; CIPA-Spezifikationsportal). Die offizielle Spezifikation – CIPA DC-008 (EXIF), derzeit bei 3.x – dokumentiert das IFD-Layout, die Tag-Typen und Einschränkungen (CIPA DC-008; Spezifikationszusammenfassung). EXIF definiert ein dediziertes GPS-Sub-IFD (Tag 0x8825) und ein Interoperabilitäts-IFD (0xA005) (Exif-Tag-Tabellen).

Implementierungsdetails sind wichtig. Typische JPEGs beginnen mit einem JFIF-APP0-Segment, gefolgt von EXIF in APP1. Ältere Lesegeräte erwarten zuerst JFIF, während moderne Bibliotheken beide Formate problemlos parsen (APP-Segment-Hinweise). In der Praxis gehen Parser manchmal von einer APP-Reihenfolge oder Größenbeschränkungen aus, die die Spezifikation nicht vorschreibt, weshalb die Entwickler von Werkzeugen spezifische Verhaltensweisen und Grenzfälle dokumentieren (Exiv2-Metadaten-Leitfaden; ExifTool-Dokumentation).

EXIF ist nicht auf JPEG/TIFF beschränkt. Das PNG-Ökosystem standardisierte den eXIf-Chunk, um EXIF-Daten in PNG-Dateien zu transportieren (die Unterstützung wächst, und die Chunk-Reihenfolge relativ zu IDAT kann in einigen Implementierungen von Bedeutung sein). WebP, ein RIFF-basiertes Format, nimmt EXIF, XMP und ICC in dedizierten Chunks auf (WebP-RIFF-Container; libwebp). Auf Apple-Plattformen bewahrt Image I/O EXIF-Daten bei der Konvertierung in HEIC/HEIF zusammen mit XMP-Daten und Herstellerinformationen (kCGImagePropertyExifDictionary).

Wenn Sie sich jemals gefragt haben, wie Apps Kameraeinstellungen ableiten, ist die EXIF-Tag-Map die Antwort: Make, Model,FNumber, ExposureTime, ISOSpeedRatings, FocalLength, MeteringMode, und mehr befinden sich in den primären und EXIF-Sub-IFDs (Exif-Tags; Exiv2-Tags). Apple stellt diese über Image I/O-Konstanten wie ExifFNumber und GPSDictionary zur Verfügung. Unter Android liest/schreibt AndroidX ExifInterface EXIF-Daten über JPEG, PNG, WebP und HEIF hinweg.

Ausrichtung, Zeit und andere Tücken

Die Ausrichtung verdient besondere Erwähnung. Die meisten Geräte speichern Pixel „wie aufgenommen“ und zeichnen ein Tag auf, das den Betrachtern mitteilt, wie sie bei der Anzeige gedreht werden sollen. Das ist Tag 274 (Orientation) mit Werten wie 1 (normal), 6 (90° im Uhrzeigersinn), 3 (180°), 8 (270°). Die Nichtbeachtung oder fehlerhafte Aktualisierung dieses Tags führt zu seitlichen Fotos, nicht übereinstimmenden Miniaturansichten und Fehlern beim maschinellen Lernen in nachfolgenden Verarbeitungsschritten (Ausrichtungs-Tag;praktische Anleitung). In Verarbeitungsprozessen wird oft eine Normalisierung vorgenommen, indem Pixel physisch gedreht und Orientation=1 gesetzt wird (ExifTool).

Die Zeitmessung ist kniffliger, als es aussieht. Historische Tags wie DateTimeOriginal haben keine Zeitzone, was grenzüberschreitende Aufnahmen mehrdeutig macht. Neuere Tags fügen Zeitzoneninformationen hinzu – z. B. OffsetTimeOriginal – damit Software DateTimeOriginal plus einen UTC-Offset (z. B. -07:00) für eine korrekte Sortierung und Geokorrelation aufzeichnen kann (OffsetTime*-Tags;Tag-Übersicht).

EXIF vs. IPTC vs. XMP

EXIF koexistiert – und überschneidet sich manchmal – mit IPTC-Fotometadaten (Titel, Ersteller, Rechte, Motive) und XMP, Adobes RDF-basiertem Framework, das als ISO 16684-1 standardisiert ist. In der Praxis gleicht korrekt implementierte Software von der Kamera erstellte EXIF-Daten mit vom Benutzer erstellten IPTC/XMP-Daten ab, ohne eines von beiden zu verwerfen (IPTC-Anleitung;LoC zu XMP;LoC zu EXIF).

Datenschutz und Sicherheit

Datenschutzfragen machen EXIF zu einem kontroversen Thema. Geotags und Geräteseriennummern haben mehr als einmal sensible Orte preisgegeben; ein bekanntes Beispiel ist dasVice-Foto von John McAfee aus dem Jahr 2012, bei dem EXIF-GPS-Koordinaten angeblich seinen Aufenthaltsort verrieten (Wired;The Guardian). Viele soziale Plattformen entfernen die meisten EXIF-Daten beim Hochladen, aber die Implementierungen variieren und ändern sich im Laufe der Zeit. Es ist ratsam, dies zu überprüfen, indem Sie Ihre eigenen Beiträge herunterladen und sie mit einem entsprechenden Tool untersuchen (Twitter-Medienhilfe;Facebook-Hilfe;Instagram-Hilfe).

Sicherheitsforscher beobachten auch EXIF-Parser genau. Schwachstellen in weit verbreiteten Bibliotheken (z. B. libexif) umfassten Pufferüberläufe und Out-of-Bounds-Lesevorgänge, die durch fehlerhafte Tags ausgelöst wurden. Diese sind leicht zu erstellen, da EXIF ein strukturiertes Binärformat an einem vorhersagbaren Ort ist (Hinweise;NVD-Suche). Es ist wichtig, Ihre Metadatenbibliotheken auf dem neuesten Stand zu halten und Bilder in einer isolierten Umgebung (Sandbox) zu verarbeiten, wenn sie aus nicht vertrauenswürdigen Quellen stammen.

Praktische Tipps

  • Verwalten Sie Standortinformationen bewusst: Deaktivieren Sie das Geotagging der Kamera gegebenenfalls oder entfernen Sie GPS-Daten beim Export. Bewahren Sie ein privates Original auf, wenn Sie die Daten später benötigen (ExifTool;Exiv2 CLI).
  • Normalisieren Sie die Ausrichtung und Zeitstempel in den Verarbeitungsprozessen, idealerweise durch Schreiben der physischen Drehung und Entfernen mehrdeutiger Tags (oder Hinzufügen von OffsetTime*). (Ausrichtung;OffsetTime*).
  • Bewahren Sie beschreibende Metadaten (Credits/Rechte) auf, indem Sie EXIF↔IPTC↔XMP gemäß den aktuellen IPTC-Richtlinien zuordnen und XMP für reichhaltige, erweiterbare Felder bevorzugen.
  • Überprüfen Sie bei PNG/WebP/HEIF, ob Ihre Bibliotheken die modernen EXIF/XMP-Speicherorte tatsächlich lesen/schreiben; gehen Sie nicht von einer Parität mit JPEG aus (PNG eXIf;WebP-Container;Image I/O).
  • Halten Sie Abhängigkeiten auf dem neuesten Stand, da Metadaten ein häufiges Ziel für Angriffe auf Parser sind (libexif-Hinweise).

Sorgfältig verwendet, ist EXIF ein Schlüsselelement, das Fotokataloge, Rechte-Workflows und Computer-Vision-Pipelines antreibt. Naiv verwendet, wird es zu einer digitalen Spur, die Sie möglicherweise nicht hinterlassen möchten. Die gute Nachricht: Das Ökosystem – Spezifikationen, Betriebssystem-APIs und Tools – gibt Ihnen die Kontrolle, die Sie benötigen (CIPA EXIF;ExifTool;Exiv2;IPTC;XMP).

Weiterführende Literatur & Referenzen

Häufig gestellte Fragen

Was sind EXIF-Daten?

EXIF-Daten (Exchangeable Image File Format) sind eine Sammlung von Metadaten zu einem Foto, wie Kameraeinstellungen, Aufnahmezeitpunkt und, bei aktiviertem GPS, auch der Standort.

Wie kann ich EXIF-Daten anzeigen?

Die meisten Bildbetrachter und -editoren (z. B. Adobe Photoshop, Windows Fotoanzeige) ermöglichen die Anzeige von EXIF-Daten. In der Regel genügt es, das Eigenschaften- oder Informationsfenster der Datei zu öffnen.

Können EXIF-Daten bearbeitet werden?

Ja, EXIF-Daten können mit spezieller Software wie Adobe Photoshop, Lightroom oder einfach zu bedienenden Online-Tools bearbeitet werden. Damit lassen sich bestimmte Metadatenfelder anpassen oder löschen.

Stellen EXIF-Daten ein Datenschutzrisiko dar?

Ja. Bei aktiviertem GPS können in den EXIF-Metadaten gespeicherte Standortdaten sensible geografische Informationen preisgeben. Es wird daher empfohlen, diese Daten vor der Weitergabe von Fotos zu entfernen oder zu anonymisieren.

Wie kann ich EXIF-Daten entfernen?

Viele Programme ermöglichen das Entfernen von EXIF-Daten. Dieser Vorgang wird oft als 'Metadaten-Stripping' bezeichnet. Es gibt auch Online-Tools, die diese Funktion anbieten.

Behalten soziale Netzwerke EXIF-Daten?

Die meisten sozialen Netzwerke wie Facebook, Instagram und Twitter entfernen EXIF-Daten automatisch von Bildern, um die Privatsphäre der Nutzer zu schützen.

Welche Informationen enthalten EXIF-Daten?

EXIF-Daten können unter anderem das Kameramodell, Datum und Uhrzeit der Aufnahme, Brennweite, Belichtungszeit, Blende, ISO-Einstellung, Weißabgleich und den GPS-Standort enthalten.

Warum sind EXIF-Daten für Fotografen nützlich?

Für Fotografen sind EXIF-Daten eine wertvolle Hilfe, um die genauen Einstellungen einer Aufnahme zu verstehen. Diese Informationen helfen, Techniken zu verbessern und ähnliche Bedingungen in Zukunft zu reproduzieren.

Enthalten alle Bilder EXIF-Daten?

Nein, nur Bilder, die mit Geräten aufgenommen wurden, die EXIF-Metadaten unterstützen, wie Digitalkameras und Smartphones, enthalten diese Daten.

Gibt es ein Standardformat für EXIF-Daten?

Ja, EXIF-Daten folgen dem von der Japan Electronic Industries Development Association (JEIDA) festgelegten Standard. Einige Hersteller können jedoch zusätzliche, proprietäre Informationen hinzufügen.

Was ist das RGBO Format?

Rohdaten für rote, grüne, blaue und Opazität-Proben

Das RGBO-Bildformat stellt einen Nischen-, aber entscheidenden Fortschritt in der digitalen Bildgebung dar, der die traditionelle Farbdarstellung mit einer Betonung optischer Eigenschaften verbindet. Dieses Format führt einen „Opazitätskanal“ in das typische RGB-Farbmodell (Rot, Grün, Blau) ein und ermöglicht so eine nuanciertere Darstellung von Durchsichtigkeit und Lichtwechselwirkung. Über die statische Farbdarstellung hinaus ermöglicht RGBO Bildern, das Verhalten von Licht in der realen Welt genauer zu simulieren, wodurch sowohl der Realismus als auch die immersiven Qualitäten digitaler Bilder verbessert werden.

Um das RGBO-Format zu verstehen, muss man zunächst die grundlegenden Prinzipien des RGB-Farbmodells erfassen. RGB, das für Rot, Grün und Blau steht, ist ein Farbraum, der in verschiedenen digitalen Anzeigen und Bildformaten verwendet wird. Es verwendet die additive Farbmethode, bei der Farben durch die Kombination unterschiedlicher Intensitäten von rotem, grünem und blauem Licht erzeugt werden. Dieses Modell basiert auf der menschlichen Farbwahrnehmung, bei der diese drei Farben den primären Farbrezeptoren im menschlichen Auge entsprechen, wodurch RGB von Natur aus für elektronische Anzeigen geeignet ist.

Die Hinzufügung des „Opazitätskanals“ in RGBO erweitert die Bandbreite der in einem digitalen Format erzielbaren visuellen Effekte erheblich. Opazität bezieht sich in diesem Zusammenhang auf die Durchsichtigkeitsebene eines Bildes und ermöglicht die Simulation von Materialien wie Glas, Nebel oder Rauch. Dieser Kanal, der in anderen Formaten oft durch den Alphakanal dargestellt wird, definiert die Transparenzebene jedes Pixels, die von vollständig transparent bis vollständig opak reicht. Dies ist besonders nützlich in geschichteten digitalen Kompositionen, bei denen die Interaktion zwischen mehreren Ebenen zur Gesamttiefe und zum Realismus des Bildes beiträgt.

Technisch gesehen speichert das RGBO-Format Daten in vier Kanälen: Rot, Grün, Blau und Opazität. Jeder Kanal reserviert typischerweise 8 Bit, was zu einer Farbtiefe von 32 Bit pro Pixel führt. Diese Konfiguration ermöglicht über 16 Millionen Farbvariationen (256 Stufen pro Kanal für RGB) und 256 Opazitätsstufen, was einen hohen Grad an Präzision sowohl bei der Farb- als auch bei der Transparenzdarstellung bietet. Je höher die Bittiefe pro Kanal, desto detaillierter und nuancierter kann das Bild sein, insbesondere bei allmählichen Übergängen zwischen Transparenzstufen.

Die praktischen Anwendungen des RGBO-Formats sind vielfältig und berühren Branchen von digitaler Kunst und Grafikdesign bis hin zu Gaming und Virtual Reality. Für Künstler und Designer bietet RGBO einen intuitiven Rahmen für die Erstellung von Bildern mit komplexen Ebenen und Texturen, was eine realistischere Darstellung von Licht und Schatten ermöglicht. Im Bereich Gaming und VR ist der nuancierte Umgang des Formats mit Opazität und Lichtwechselwirkung entscheidend für die Gestaltung immersiver Umgebungen und trägt zum Gefühl der Präsenz des Spielers in der virtuellen Welt bei.

Trotz seiner Vorteile stellt das RGBO-Format bestimmte Herausforderungen, insbesondere in Bezug auf Dateigröße und Rechenleistung. Die Einbeziehung eines zusätzlichen Opazitätskanals erhöht die Datenmenge, die zur Beschreibung jedes Pixels erforderlich ist, was zu größeren Dateigrößen im Vergleich zu herkömmlichen RGB-Formaten führt. Diese Zunahme kann insbesondere bei hochauflösenden Bildern erheblich sein und sich auf Speicheranforderungen und Datenübertragungsgeschwindigkeiten auswirken. Darüber hinaus erfordert das Rendern von RGBO-Bildern mehr Rechenleistung, da die Opazitätsstufe jedes Pixels in Verbindung mit seiner Farbe berechnet werden muss, ein Prozess, der das Laden und Bearbeiten von Bildern verlangsamen kann, insbesondere auf weniger leistungsstarken Geräten.

Um diesen Herausforderungen zu begegnen, wurden verschiedene Komprimierungstechniken entwickelt, die darauf abzielen, die Dateigröße von RGBO-Bildern zu reduzieren, ohne die Qualität zu beeinträchtigen. Verlustfreie Komprimierungsmethoden wie PNG bewahren die vollständigen Daten des Bildes und stellen sicher, dass kein Qualitätsverlust auftritt. Alternativ reduzieren verlustbehaftete Komprimierungstechniken wie JPEG die Dateigröße durch Vereinfachung der Daten, was zu einem gewissen Detailverlust führen kann, insbesondere in Bereichen mit subtilen Opazitätsübergängen. Die Wahl der Komprimierungsmethode hängt von den spezifischen Anforderungen des Projekts ab und stellt ein Gleichgewicht zwischen Qualität, Dateigröße und Leistungsanforderungen her.

Die Implementierung des RGBO-Formats erfordert eine sorgfältige Berücksichtigung der Farbmanagementpraktiken, um eine konsistente und genaue Farbwiedergabe auf verschiedenen Geräten zu gewährleisten. Farbmanagement beinhaltet die Verwendung von Farbprofilen, die die Farbeigenschaften von Eingabe- und Ausgabegeräten wie Kameras, Monitoren und Druckern beschreiben. Durch die Anwendung dieser Profile ist es möglich, eine enge Übereinstimmung zwischen den auf dem Bildschirm angezeigten Farben und denen im endgültigen Druck oder auf einer anderen Anzeige zu erzielen. Dies ist in professionellen Umgebungen von entscheidender Bedeutung, in denen präzise Farbe und Transparenz von größter Bedeutung sind.

Die Entwicklung von Webstandards und Frameworks hat die Verwendung von RGBO in Online-Inhalten erleichtert und seine Reichweite über eigenständige Bilder hinaus auf dynamische Web-Elemente und Schnittstellen erweitert. CSS unterstützt beispielsweise RGBA-Werte (das Äquivalent zu RGBO, wobei „A“ für Alpha-Opazität steht) beim Styling von Web-Elementen. Dies ermöglicht die Erstellung von halbtransparenten Ebenen und Effekten direkt innerhalb von Webseiten, wodurch der visuelle Reichtum und die Benutzererfahrung von Webanwendungen ohne komplexe Bildbearbeitung oder zusätzliche Dateiformate verbessert werden.

Mit Blick auf die Zukunft birgt das RGBO-Format vielversprechende Möglichkeiten für Fortschritte in den Technologien Augmented Reality (AR) und Mixed Reality (MR). Die detaillierte Darstellung von Opazität und Licht durch das Format spielt eine entscheidende Rolle bei der nahtlosen Verschmelzung digitaler Inhalte mit der realen Welt, einer grundlegenden Herausforderung in der AR/MR-Entwicklung. Durch die genaue Simulation der Interaktion virtueller Objekte mit realer Beleuchtung und Transparenz können RGBO-Bilder die Glaubwürdigkeit und Integration digitaler Elemente in unserer physischen Umgebung verbessern.

Darüber hinaus unterstreicht die laufende Entwicklung von Anzeigetechnologien wie OLED- und Quantenpunktanzeigen die Bedeutung des RGBO-Formats. Diese Technologien, die für ihre lebendigen Farben und tiefen Schwarztöne bekannt sind, können von der detaillierten Farb- und Transparenzdarstellung von RGBO erheblich profitieren. Die Möglichkeit, die Opazität von Pixeln auf diesen Anzeigen zu steuern, eröffnet neue Möglichkeiten für die dynamische Inhaltspräsentation und Energieeffizienz, da vollständig transparente Pixel keinen Strom verbrauchen.

Die Integration von RGBO in digitale Asset-Workflows erfordert Anpassung und Schulung, da das Format Komplexitäten einführt, die in herkömmlichen RGB-Bildern nicht vorhanden sind. Künstler, Designer und Entwickler müssen sich neben der Farbe auch mit der Verwaltung von Opazität vertraut machen, was ein breiteres Kompetenzspektrum und ein Verständnis der Prinzipien der digitalen Bildgebung erfordert. Darüber hinaus müssen Softwaretools und -anwendungen eine robuste Unterstützung für RGBO bieten, einschließlich Funktionen zum effizienten Bearbeiten und Anzeigen von Opazitätseffekten, um die Funktionen des Formats voll auszuschöpfen.

Angesichts der einzigartigen Eigenschaften des RGBO-Formats ist es entscheidend, dass sich Standards und Best Practices für die digitale Bildgebung parallel weiterentwickeln, um sicherzustellen, dass diese Innovation branchenübergreifend zugänglich und effektiv genutzt wird. Dies kann die Entwicklung neuer Dateiformate, Bearbeitungstools und Komprimierungstechniken beinhalten, die speziell auf die Anforderungen von RGBO-Bildern zugeschnitten sind. Die Zusammenarbeit zwischen Technologieanbietern, Kreativen und Industrieverbänden wird der Schlüssel sein, um die Einführung von RGBO voranzutreiben, seine Herausforderungen anzugehen und sein volles Potenzial auszuschöpfen.

Zusammenfassend lässt sich sagen, dass das RGBO-Bildformat einen bedeutenden Fortschritt im Bereich der digitalen Bildgebung darstellt und erweiterte Möglichkeiten zur Darstellung von Realismus durch Farbe und Opazität bietet. Obwohl es durch Dateigröße und Rechenanforderungen herausgefordert wird, erweitern Entwicklungen in der Komprimierungs- und Verarbeitungstechnologie seine Anwendbarkeit in verschiedenen Bereichen weiter. Von digitaler Kunst bis hin zu AR nimmt der Einfluss von RGBO zu und läutet eine Zukunft ein, in der digitale Bilder die Komplexität und Dynamik der visuellen Welt genauer widerspiegeln.

Unterstützte Formate

AAI.aai

AAI Dune Bild

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 Bildformat

BAYER.bayer

Rohes Bayer-Bild

BMP.bmp

Microsoft Windows Bitmap-Bild

CIN.cin

Cineon-Bilddatei

CLIP.clip

Bild-Clip-Maske

CMYK.cmyk

Rohcyan-, Magenta-, Gelb- und Schwarzproben

CUR.cur

Microsoft-Symbol

DCX.dcx

ZSoft IBM PC mehrseitige Paintbrush

DDS.dds

Microsoft DirectDraw-Oberfläche

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) Bild

DXT1.dxt1

Microsoft DirectDraw-Oberfläche

EPDF.epdf

Eingekapseltes tragbares Dokumentenformat

EPI.epi

Adobe Encapsulated PostScript Interchange-Format

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

Adobe Encapsulated PostScript Interchange-Format

EPT.ept

Eingekapseltes PostScript mit TIFF-Vorschau

EPT2.ept2

Eingekapseltes PostScript Level II mit TIFF-Vorschau

EXR.exr

Bild mit hohem Dynamikbereich (HDR)

FF.ff

Farbfeld

FITS.fits

Flexibles Bildtransport-System

GIF.gif

CompuServe-Grafikaustauschformat

HDR.hdr

Bild mit hohem Dynamikbereich (HDR)

HEIC.heic

Hocheffizienter Bildcontainer

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Microsoft-Symbol

ICON.icon

Microsoft-Symbol

J2C.j2c

JPEG-2000 Codestream

J2K.j2k

JPEG-2000 Codestream

JNG.jng

JPEG Network Graphics

JP2.jp2

JPEG-2000 Dateiformat Syntax

JPE.jpe

Joint Photographic Experts Group JFIF-Format

JPEG.jpeg

Joint Photographic Experts Group JFIF-Format

JPG.jpg

Joint Photographic Experts Group JFIF-Format

JPM.jpm

JPEG-2000 Dateiformat Syntax

JPS.jps

Joint Photographic Experts Group JPS-Format

JPT.jpt

JPEG-2000 Dateiformat Syntax

JXL.jxl

JPEG XL-Bild

MAP.map

Multi-Resolution Seamless Image Database (MrSID)

MAT.mat

MATLAB-Level-5-Bildformat

PAL.pal

Palm-Pixmap

PALM.palm

Palm-Pixmap

PAM.pam

Allgemeines zweidimensionales Bitmap-Format

PBM.pbm

Portable Bitmap-Format (schwarz-weiß)

PCD.pcd

Photo-CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Palm Database ImageViewer-Format

PDF.pdf

Portable Document Format

PDFA.pdfa

Portable Document Archive-Format

PFM.pfm

Portable Float-Format

PGM.pgm

Portable Graymap-Format (Graustufen)

PGX.pgx

JPEG-2000 unkomprimiertes Format

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Joint Photographic Experts Group JFIF-Format

PNG.png

Portable Network Graphics

PNG00.png00

PNG mit Bit-Tiefe und Farbtyp vom Originalbild erben

PNG24.png24

Opakes oder binäres transparentes 24-Bit-RGB (zlib 1.2.11)

PNG32.png32

Opakes oder binäres transparentes 32-Bit-RGBA

PNG48.png48

Opakes oder binäres transparentes 48-Bit-RGB

PNG64.png64

Opakes oder binäres transparentes 64-Bit-RGBA

PNG8.png8

Opakes oder binäres transparentes 8-Bit-Indexed

PNM.pnm

Portable Anymap

PPM.ppm

Portable Pixmap-Format (Farbe)

PS.ps

Adobe PostScript-Datei

PSB.psb

Adobe Large Document-Format

PSD.psd

Adobe Photoshop-Bitmap

RGB.rgb

Rohdaten für rote, grüne und blaue Proben

RGBA.rgba

Rohdaten für rote, grüne, blaue und Alpha-Proben

RGBO.rgbo

Rohdaten für rote, grüne, blaue und Opazität-Proben

SIX.six

DEC SIXEL-Grafikformat

SUN.sun

Sun Rasterfile

SVG.svg

Skalierbare Vektorgrafiken

TIFF.tiff

Tagged Image File Format

VDA.vda

Truevision-Targa-Bild

VIPS.vips

VIPS-Bild

WBMP.wbmp

Wireless Bitmap (Level 0) Bild

WEBP.webp

WebP-Bildformat

YUV.yuv

CCIR 601 4:1:1 oder 4:2:2

Häufig gestellte Fragen

Wie funktioniert das?

Dieser Konverter läuft vollständig in Ihrem Browser. Wenn Sie eine Datei auswählen, wird sie in den Speicher gelesen und in das ausgewählte Format konvertiert. Sie können die konvertierte Datei dann herunterladen.

Wie lange dauert die Konvertierung einer Datei?

Die Konvertierung beginnt sofort, und die meisten Dateien werden in weniger als einer Sekunde konvertiert. Größere Dateien können länger dauern.

Was passiert mit meinen Dateien?

Ihre Dateien werden niemals auf unsere Server hochgeladen. Sie werden in Ihrem Browser konvertiert, und die konvertierte Datei wird dann heruntergeladen. Wir sehen Ihre Dateien niemals.

Welche Dateitypen kann ich konvertieren?

Wir unterstützen die Konvertierung zwischen allen Bildformaten, einschließlich JPEG, PNG, GIF, WebP, SVG, BMP, TIFF und mehr.

Wie viel kostet das?

Dieser Konverter ist völlig kostenlos und wird immer kostenlos sein. Da er in Ihrem Browser läuft, müssen wir nicht für Server bezahlen, also müssen wir Ihnen auch nichts berechnen.

Kann ich mehrere Dateien auf einmal konvertieren?

Ja! Sie können so viele Dateien auf einmal konvertieren, wie Sie möchten. Wählen Sie einfach mehrere Dateien aus, wenn Sie sie hinzufügen.