OCR de cualquier J2C
Arrastra y suelta o haz clic para seleccionar
Privado y seguro
Todo sucede en tu navegador. Tus archivos nunca tocan nuestros servidores.
Ultrarrápido
Sin subidas, sin esperas. Convierte en el momento en que sueltas un archivo.
Realmente gratis
No se requiere cuenta. Sin costos ocultos. Sin trucos de tamaño de archivo.
El Reconocimiento Óptico de Caracteres (OCR) convierte imágenes de texto—escaneos, fotos de smartphone, PDFs—en cadenas legibles por máquina y, cada vez más, en datos estructurados. El OCR moderno es una tubería que limpia una imagen, encuentra texto, lo lee y exporta metadatos ricos para que los sistemas posteriores puedan buscar, indexar o extraer campos. Dos estándares de salida ampliamente utilizados son hOCR, un microformato HTML para texto y diseño, y ALTO XML, un esquema orientado a bibliotecas/archivos; ambos preservan posiciones, orden de lectura y otras pistas de diseño y son compatibles con motores populares como Tesseract.
Un recorrido rápido por la tubería
Preprocesamiento. La calidad del OCR comienza con la limpieza de la imagen: conversión a escala de grises, eliminación de ruido, umbralización (binarización) y corrección de inclinación. Los tutoriales canónicos de OpenCV cubren umbralización global, adaptativa y Otsu —elementos básicos para documentos con iluminación no uniforme o histogramas bimodales. Cuando la iluminación varía dentro de una página (piense en las instantáneas del teléfono), los métodos adaptativos a menudo superan a un único umbral global; Otsu elige automáticamente un umbral analizando el histograma. La corrección de la inclinación es igualmente importante: la corrección de inclinación basada en Hough (Transformada de Hough Line) junto con la binarización de Otsu es una receta común y efectiva en las tuberías de preprocesamiento de producción.
Detección vs. reconocimiento. El OCR se divide típicamente en detección de texto (¿dónde está el texto?) y reconocimiento de texto (¿qué dice?). En escenas naturales y muchos escaneos, los detectores totalmente convolucionales como EAST predicen eficientemente cuadriláteros a nivel de palabra o línea sin pesadas etapas de propuesta y se implementan en kits de herramientas comunes (por ejemplo, tutorial de detección de texto de OpenCV). En páginas complejas (periódicos, formularios, libros), la segmentación de líneas/regiones y la inferencia del orden de lectura son importantes:Kraken implementa la segmentación tradicional de zonas/líneas y la segmentación neuronal de línea de base, con soporte explícito para diferentes escrituras y direcciones (LTR/RTL/vertical).
Modelos de reconocimiento. El clásico caballo de batalla de código abierto Tesseract (de código abierto por Google, con raíces en HP) evolucionó de un clasificador de caracteres a un reconocedor de secuencias basado en LSTM y puede emitir archivos PDF con capacidad de búsqueda, salidas compatibles con hOCR/ALTO, y más desde la CLI. Los reconocedores modernos se basan en el modelado de secuencias sin caracteres presegmentados. Clasificación Temporal Conexionista (CTC) sigue siendo fundamental, aprendiendo alineaciones entre secuencias de características de entrada y cadenas de etiquetas de salida; se utiliza ampliamente en tuberías de escritura a mano y texto de escena.
En los últimos años, los Transformers han remodelado el OCR. TrOCR utiliza un codificador Vision Transformer más un decodificador Text Transformer, entrenado en grandes corpus sintéticos y luego ajustado en datos reales, con un sólido rendimiento en benchmarks de texto impreso, manuscrito y de escena (véase también documentación de Hugging Face). En paralelo, algunos sistemas eluden el OCR para la comprensión posterior: Donut (Document Understanding Transformer) es un codificador-decodificador sin OCR que genera directamente respuestas estructuradas (como JSON de clave-valor) a partir de imágenes de documentos (repositorio, tarjeta de modelo), evitando la acumulación de errores cuando un paso de OCR separado alimenta un sistema de IE.
Motores y bibliotecas
Si desea una lectura de texto con todo incluido en muchas escrituras, EasyOCR ofrece una API simple con más de 80 modelos de lenguaje, que devuelve cuadros, texto y confidencias, útil para prototipos y escrituras no latinas. Para documentos históricos, Kraken brilla con la segmentación de línea de base y el orden de lectura consciente de la escritura; para un entrenamiento flexible a nivel de línea, Calamari se basa en el linaje de Ocropy (Ocropy) con reconocedores (multi-)LSTM+CTC y una CLI para ajustar modelos personalizados.
Conjuntos de datos y benchmarks
La generalización depende de los datos. Para la escritura a mano, la Base de datos de escritura a mano IAM proporciona oraciones en inglés de diversos escritores para entrenamiento y evaluación; es un conjunto de referencia de larga data para el reconocimiento de líneas y palabras. Para el texto de escena, COCO-Text superpuso anotaciones extensas sobre MS-COCO, con etiquetas para texto impreso/manuscrito, legible/ilegible, escritura y transcripciones completas (véase también la página original del proyecto). El campo también depende en gran medida del preentrenamiento sintético: SynthText in the Wild representa texto en fotografías con geometría e iluminación realistas, proporcionando enormes volúmenes de datos para preentrenar detectores y reconocedores (referencia código y datos).
Las competiciones bajo el paraguas de Lectura Robusta de ICDAR mantienen la evaluación fundamentada. Las tareas recientes enfatizan la detección/lectura de extremo a extremo e incluyen la vinculación de palabras en frases, con el código oficial informando precisión/recuperación/puntuación F, intersección sobre unión (IoU) y métricas de distancia de edición a nivel de carácter, lo que refleja lo que los profesionales deben rastrear.
Formatos de salida y uso posterior
El OCR rara vez termina en texto plano. Los archivos y las bibliotecas digitales prefieren ALTO XML porque codifica el diseño físico (bloques/líneas/palabras con coordenadas) junto con el contenido, y se combina bien con el empaquetado METS. El microformato hOCR , por el contrario, incorpora la misma idea en HTML/CSS utilizando clases como ocr_line y ocrx_word, lo que facilita su visualización, edición y transformación con herramientas web. Tesseract expone ambos, por ejemplo, generando hOCR o PDF con capacidad de búsqueda directamente desde la CLI (guía de salida de PDF); los envoltorios de Python como pytesseract añaden comodidad. Existen convertidores para traducir entre hOCR y ALTO cuando los repositorios tienen estándares de ingesta fijos —véase esta lista curada de herramientas de formato de archivo OCR.
Orientación práctica
- Comience con los datos y la limpieza. Si sus imágenes son fotos de teléfono o escaneos de calidad mixta, invierta en umbralización (adaptativa y Otsu) y corrección de inclinación (Hough) antes de cualquier ajuste del modelo. A menudo obtendrá más de una receta de preprocesamiento robusta que de cambiar de reconocedores.
- Elija el detector adecuado. Para páginas escaneadas con columnas regulares, un segmentador de páginas (zonas → líneas) puede ser suficiente; para imágenes naturales, los detectores de un solo disparo como EAST son líneas de base sólidas y se conectan a muchos kits de herramientas (ejemplo de OpenCV).
- Elija un reconocedor que coincida con su texto. Para el latín impreso, Tesseract (LSTM/OEM) es robusto y rápido; para múltiples escrituras o prototipos rápidos, EasyOCR es productivo; para escritura a mano o tipos de letra históricos, considere Kraken o Calamari y planee un ajuste fino. Si necesita un acoplamiento estrecho con la comprensión de documentos (extracción de clave-valor, VQA), evalúe TrOCR (OCR) frente a Donut (sin OCR) en su esquema—Donut puede eliminar todo un paso de integración.
- Mida lo que importa. Para sistemas de extremo a extremo, informe la detección puntuación F y el reconocimiento CER/WER (ambos basados en la distancia de edición de Levenshtein ; véase CTC); para tareas con mucho diseño, rastree la IoU/ajuste y la distancia de edición normalizada a nivel de carácter como en los kits de evaluación de ICDAR RRC .
- Exporte salidas ricas. Prefiera hOCR /ALTO (o ambos) para mantener las coordenadas y el orden de lectura, vital para resaltar los resultados de búsqueda, la extracción de tablas/campos y la procedencia. La CLI de Tesseract y pytesseract lo convierten en una sola línea.
Mirando hacia el futuro
La tendencia más fuerte es la convergencia: la detección, el reconocimiento, el modelado del lenguaje e incluso la decodificación específica de la tarea se están fusionando en pilas de Transformer unificadas. El preentrenamiento en grandes corpus sintéticos sigue siendo un multiplicador de fuerza. Los modelos sin OCR competirán agresivamente dondequiera que el objetivo sean salidas estructuradas en lugar de transcripciones literales. Espere también implementaciones híbridas: un detector ligero más un reconocedor de estilo TrOCR para texto de formato largo, y un modelo de estilo Donut para formularios y recibos.
Lecturas adicionales y herramientas
Tesseract (GitHub) · Documentación de Tesseract · Especificación de hOCR · Fondo de ALTO · Detector EAST · Detección de texto de OpenCV · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · Escritura a mano de IAM · Herramientas de formato de archivo OCR · EasyOCR
Preguntas frecuentes
¿Qué es OCR?
El Reconocimiento Óptico de Caracteres (OCR) es una tecnología utilizada para convertir diferentes tipos de documentos, como documentos en papel escaneados, archivos PDF o imágenes capturadas por una cámara digital, en datos editables y buscables.
¿Cómo funciona OCR?
OCR funciona escaneando una imagen o documento de entrada, segmentando la imagen en caracteres individuales y comparando cada carácter con una base de datos de formas de caracteres utilizando reconocimiento de patrones o reconocimiento de características.
¿Cuáles son algunas aplicaciones prácticas de OCR?
OCR se utiliza en una variedad de sectores y aplicaciones, incluyendo la digitalización de documentos impresos, la habilitación de servicios de texto a voz, la automatización de procesos de entrada de datos, y ayudar a los usuarios con discapacidad visual a interactuar mejor con el texto.
¿Es OCR siempre 100% exacto?
Aunque se han hecho grandes avances en la tecnología OCR, no es infalible. La precisión puede variar dependiendo de la calidad del documento original y las especificidades del software OCR que se esté utilizando.
¿Puede OCR reconocer la escritura a mano?
Aunque OCR está diseñado principalmente para texto impreso, algunos sistemas avanzados de OCR también pueden reconocer escritura a mano clara y consistente. Sin embargo, en general, el reconocimiento de la escritura a mano es menos preciso debido a la amplia variación en los estilos de escritura individuales.
¿Puede OCR manejar múltiples idiomas?
Sí, muchos sistemas de software OCR pueden reconocer múltiples idiomas. Sin embargo, es importante asegurar que el idioma específico sea soportado por el software que estás utilizando.
¿Cuál es la diferencia entre OCR e ICR?
OCR significa Reconocimiento Óptico de Caracteres y se utiliza para reconocer texto impreso, mientras que ICR, o Reconocimiento Inteligente de Caracteres, es más avanzado y se utiliza para reconocer texto escrito a mano.
¿Funciona OCR con cualquier fuente y tamaño de texto?
OCR funciona mejor con fuentes claras y fáciles de leer y tamaños de texto estándar. Si bien puede funcionar con varias fuentes y tamaños, la precisión tiende a disminuir cuando se trata de fuentes inusuales o tamaños de texto muy pequeños.
¿Cuáles son las limitaciones de la tecnología OCR?
OCR puede tener dificultades con documentos de baja resolución, fuentes complejas, textos mal impresos, escritura a mano y documentos con fondos que interfieren con el texto. Además, aunque puede trabajar con muchos idiomas, puede que no cubra cada idioma a la perfección.
¿Puede OCR escanear texto en color o fondos en color?
Sí, OCR puede escanear texto en color y fondos en color, aunque generalmente es más efectivo con combinaciones de colores de alto contraste, como texto negro sobre un fondo blanco. La precisión puede disminuir cuando los colores del texto y del fondo carecen de suficiente contraste.
¿Qué es el formato J2C?
Flujo JPEG-2000
El formato de imagen J2C, también conocido como flujo de código JPEG 2000, es parte del conjunto de estándares JPEG 2000. JPEG 2000 en sí es un estándar de compresión de imagen y un sistema de codificación creado por el comité Joint Photographic Experts Group con la intención de reemplazar el estándar JPEG original. El estándar JPEG 2000 se estableció con el objetivo de proporcionar un nuevo sistema de codificación de imágenes con alta flexibilidad y un rendimiento mejorado con respecto a JPEG. Fue diseñado para abordar algunas limitaciones del formato JPEG, como el bajo rendimiento en bajas velocidades de bits y la falta de escalabilidad.
JPEG 2000 utiliza la transformación de ondículas en lugar de la transformada discreta del coseno (DCT) utilizada en el estándar JPEG original. La transformación de ondículas permite un mayor grado de escalabilidad y la capacidad de realizar compresión sin pérdidas, lo que significa que la imagen original se puede reconstruir perfectamente a partir de los datos comprimidos. Esta es una ventaja significativa sobre la compresión con pérdida del JPEG original, que pierde permanentemente cierta información de la imagen durante el proceso de compresión.
El formato de archivo J2C se refiere específicamente al flujo de código de JPEG 2000. Este flujo de código son los datos de imagen codificados reales, que se pueden incrustar en varios formatos de contenedor como JP2 (formato de archivo JPEG 2000 Parte 1), JPX (JPEG 2000 Parte 2, formato de archivo extendido) y MJ2 (formato de archivo Motion JPEG 2000 para video). El formato J2C es esencialmente los datos de imagen codificados sin procesar sin ningún metadato o estructura adicional que pueda proporcionar un formato de contenedor.
Una de las características clave del formato J2C es su compatibilidad con la compresión con y sin pérdida dentro del mismo archivo. Esto se logra mediante el uso de una transformada de ondícula reversible para la compresión sin pérdida y una transformada de ondícula irreversible para la compresión con pérdida. La elección entre compresión con y sin pérdida se puede realizar por mosaico dentro de la imagen, lo que permite una combinación de regiones de alta y baja calidad según la importancia del contenido.
El formato J2C también es altamente escalable y admite una función conocida como "decodificación progresiva". Esto significa que primero se puede decodificar y mostrar una versión de baja resolución de la imagen, seguida de capas sucesivas de mayor resolución a medida que se reciben o procesan más datos de la imagen. Esto es particularmente útil para aplicaciones de red donde el ancho de banda puede ser limitado, ya que permite una vista previa rápida de la imagen mientras aún se descarga la imagen completa de alta resolución.
Otro aspecto importante del formato J2C es su compatibilidad con regiones de interés (ROI). Con la codificación ROI, ciertas partes de la imagen se pueden codificar con una calidad más alta que el resto de la imagen. Esto es útil cuando ciertas áreas de la imagen son más importantes y deben conservarse con mayor fidelidad, como rostros en un retrato o texto en un documento.
El formato J2C también incluye funciones sofisticadas de resistencia a errores, que lo hacen más robusto a la pérdida de datos durante la transmisión. Esto se logra mediante el uso de códigos de corrección de errores y la estructuración del flujo de código de una manera que permita la recuperación de paquetes perdidos. Esto hace que J2C sea una buena opción para transmitir imágenes a través de redes poco confiables o almacenar imágenes de una manera que minimice el impacto de la posible corrupción de datos.
El manejo del espacio de color en J2C también es más avanzado que en el JPEG original. El formato admite una amplia gama de espacios de color, incluidos escala de grises, RGB, YCbCr y otros. También permite que se utilicen diferentes espacios de color dentro de diferentes mosaicos de la misma imagen, lo que proporciona flexibilidad adicional en la forma en que se codifican y representan las imágenes.
La eficiencia de compresión del formato J2C es otra de sus fortalezas. Al utilizar la transformación de ondículas y técnicas avanzadas de codificación de entropía como la codificación aritmética, J2C puede lograr relaciones de compresión más altas que el JPEG original, especialmente a velocidades de bits más bajas. Esto lo convierte en una opción atractiva para aplicaciones donde el espacio de almacenamiento o el ancho de banda son escasos, como en dispositivos móviles o aplicaciones web.
A pesar de sus muchas ventajas, el formato J2C no ha tenido una adopción generalizada en comparación con el formato JPEG original. Esto se debe en parte a la mayor complejidad del estándar JPEG 2000, que requiere más recursos computacionales para codificar y decodificar imágenes. Además, el formato JPEG original está profundamente arraigado en muchos sistemas y tiene un vasto ecosistema de soporte de software y hardware, lo que dificulta que un nuevo estándar gane terreno.
Sin embargo, en ciertos campos especializados, el formato J2C se ha convertido en la opción preferida debido a sus características específicas. Por ejemplo, en imágenes médicas, la capacidad de realizar compresión sin pérdidas y el soporte para imágenes de alto rango dinámico y alta profundidad de bits hacen de J2C un formato ideal. De manera similar, en el cine digital y el archivo de video, la alta calidad del formato a altas relaciones de compresión y sus características de escalabilidad son muy valoradas.
El proceso de codificación de una imagen J2C implica varios pasos. Primero, la imagen se divide en mosaicos, que se pueden procesar de forma independiente. Esta división en mosaicos permite el procesamiento paralelo y puede mejorar la eficiencia de los procesos de codificación y decodificación. Luego, cada mosaico se transforma utilizando una transformada de ondícula reversible o irreversible, según se desee una compresión con o sin pérdida.
Después de la transformación de ondículas, los coeficientes se cuantifican, lo que implica reducir la precisión de los coeficientes de ondículas. En la compresión sin pérdida, este paso se omite, ya que la cuantificación introduciría errores. Los coeficientes cuantificados se codifican por entropía mediante codificación aritmética, lo que reduce el tamaño de los datos aprovechando las propiedades estadísticas del contenido de la imagen.
El paso final en el proceso de codificación es el ensamblaje del flujo de código. Los datos codificados por entropía para cada mosaico se combinan con información de encabezado que describe la imagen y cómo se codificó. Esto incluye información sobre el tamaño de la imagen, el número de mosaicos, la transformada de ondículas utilizada, los parámetros de cuantificación y cualquier otro dato relevante. El flujo de código resultante se puede almacenar en un archivo J2C o incrustar en un formato de contenedor.
Decodificar una imagen J2C implica esencialmente revertir el proceso de codificación. El flujo de código se analiza para extraer la información del encabezado y los datos codificados por entropía para cada mosaico. Luego, los datos codificados por entropía se decodifican para recuperar los coeficientes de ondículas cuantificados. Si la imagen se comprimió mediante compresión con pérdida, los coeficientes se des-cuantifican para aproximar sus valores originales. La transformada de ondícula inversa se aplica para reconstruir la imagen a partir de los coeficientes de ondículas, y los mosaicos se unen para formar la imagen final.
En conclusión, el formato de imagen J2C es un sistema de codificación de imágenes potente y flexible que ofrece varias ventajas sobre el formato JPEG original, incluida una mejor eficiencia de compresión, escalabilidad y la capacidad de realizar compresión sin pérdidas. Si bien no ha alcanzado el mismo nivel de ubicuidad que JPEG, es muy adecuado para aplicaciones que requieren imágenes de alta calidad o tienen requisitos técnicos específicos. A medida que la tecnología continúa avanzando y crece la necesidad de sistemas de codificación de imágenes más sofisticados, el formato J2C puede ver una mayor adopción en una variedad de campos.
Formatos de archivo compatibles
AAI.aai
Imagen Dune AAI
AI.ai
Adobe Illustrator CS2
AVIF.avif
Formato de archivo de imagen AV1
BAYER.bayer
Imagen Bayer en bruto
BMP.bmp
Imagen bitmap de Microsoft Windows
CIN.cin
Archivo de imagen Cineon
CLIP.clip
Máscara de clip de imagen
CMYK.cmyk
Muestras de cian, magenta, amarillo y negro en bruto
CUR.cur
Icono de Microsoft
DCX.dcx
ZSoft IBM PC Paintbrush multipágina
DDS.dds
Superficie DirectDraw de Microsoft
DPX.dpx
Imagen SMTPE 268M-2003 (DPX 2.0)
DXT1.dxt1
Superficie DirectDraw de Microsoft
EPDF.epdf
Formato de documento portátil encapsulado
EPI.epi
Formato de intercambio PostScript encapsulado de Adobe
EPS.eps
PostScript encapsulado de Adobe
EPSF.epsf
PostScript encapsulado de Adobe
EPSI.epsi
Formato de intercambio PostScript encapsulado de Adobe
EPT.ept
PostScript encapsulado con vista previa TIFF
EPT2.ept2
PostScript encapsulado Nivel II con vista previa TIFF
EXR.exr
Imagen de alto rango dinámico (HDR)
FF.ff
Farbfeld
FITS.fits
Sistema de Transporte de Imagen Flexible
GIF.gif
Formato de intercambio de gráficos CompuServe
HDR.hdr
Imagen de alto rango dinámico
HEIC.heic
Contenedor de imagen de alta eficiencia
HRZ.hrz
Televisión de barrido lento
ICO.ico
Icono de Microsoft
ICON.icon
Icono de Microsoft
J2C.j2c
Flujo JPEG-2000
J2K.j2k
Flujo JPEG-2000
JNG.jng
Gráficos JPEG Network
JP2.jp2
Sintaxis de formato de archivo JPEG-2000
JPE.jpe
Formato JFIF del Grupo Conjunto de Expertos en Fotografía
JPEG.jpeg
Formato JFIF del Grupo Conjunto de Expertos en Fotografía
JPG.jpg
Formato JFIF del Grupo Conjunto de Expertos en Fotografía
JPM.jpm
Sintaxis de formato de archivo JPEG-2000
JPS.jps
Formato JPS del Grupo Conjunto de Expertos en Fotografía
JPT.jpt
Sintaxis de formato de archivo JPEG-2000
JXL.jxl
Imagen JPEG XL
MAP.map
Base de datos de imágenes sin costuras multiresolución (MrSID)
MAT.mat
Formato de imagen MATLAB nivel 5
PAL.pal
Mapa de pixeles Palm
PALM.palm
Mapa de pixeles Palm
PAM.pam
Formato común de mapa de bits 2-dimensional
PBM.pbm
Formato de mapa de bits portable (blanco y negro)
PCD.pcd
Photo CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
Formato Palm Database ImageViewer
PDF.pdf
Formato de Documento Portátil
PDFA.pdfa
Formato de Archivo de Documento Portátil
PFM.pfm
Formato flotante portable
PGM.pgm
Formato de mapa de grises portable (escala de grises)
PGX.pgx
Formato sin comprimir JPEG 2000
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
Formato JFIF del Grupo Conjunto de Expertos en Fotografía
PNG.png
Gráficos de red portátiles
PNG00.png00
PNG que hereda profundidad de bits, tipo de color de la imagen original
PNG24.png24
RGB opaco o transparente binario de 24 bits (zlib 1.2.11)
PNG32.png32
RGBA opaco o transparente binario de 32 bits
PNG48.png48
RGB opaco o transparente binario de 48 bits
PNG64.png64
RGBA opaco o transparente binario de 64 bits
PNG8.png8
Índice opaco o transparente binario de 8 bits
PNM.pnm
Anymap portable
PPM.ppm
Formato de mapa de bits portable (color)
PS.ps
Archivo PostScript de Adobe
PSB.psb
Formato de documento grande de Adobe
PSD.psd
Mapa de bits Photoshop de Adobe
RGB.rgb
Muestras de rojo, verde y azul en bruto
RGBA.rgba
Muestras de rojo, verde, azul y alfa en bruto
RGBO.rgbo
Muestras de rojo, verde, azul y opacidad en bruto
SIX.six
Formato de gráficos DEC SIXEL
SUN.sun
Formato Rasterfile de Sun
SVG.svg
Gráficos vectoriales escalables
TIFF.tiff
Formato de archivo de imagen etiquetado
VDA.vda
Imagen Truevision Targa
VIPS.vips
Imagen VIPS
WBMP.wbmp
Imagen inalámbrica Bitmap (nivel 0)
WEBP.webp
Formato de imagen WebP
YUV.yuv
CCIR 601 4:1:1 o 4:2:2
Preguntas frecuentes
¿Cómo funciona esto?
Este convertidor funciona completamente en tu navegador. Cuando seleccionas un archivo, se lee en la memoria y se convierte al formato seleccionado. Luego puedes descargar el archivo convertido.
¿Cuánto tarda en convertir un archivo?
Las conversiones comienzan al instante, y la mayoría de los archivos se convierten en menos de un segundo. Archivos más grandes pueden tardar más.
¿Qué sucede con mis archivos?
Tus archivos nunca se suben a nuestros servidores. Se convierten en tu navegador, y el archivo convertido se descarga luego. Nosotros nunca vemos tus archivos.
¿Qué tipos de archivo puedo convertir?
Soportamos la conversión entre todos los formatos de imagen, incluyendo JPEG, PNG, GIF, WebP, SVG, BMP, TIFF y más.
¿Cuánto cuesta esto?
Este convertidor es completamente gratis, y siempre será gratis. Debido a que funciona en tu navegador, no tenemos que pagar por servidores, así que no necesitamos cobrarte.
¿Puedo convertir múltiples archivos a la vez?
¡Sí! Puedes convertir tantos archivos como quieras a la vez. Sólo selecciona múltiples archivos cuando los agregues.