View EXIF metadata for any DPX
Drag and drop or click to select.
Private and secure
Everything happens in your browser. Your files never touch our servers.
Blazing fast
No uploading, no waiting. Convert the moment you drop a file.
Actually free
No account required. No hidden costs. No file size tricks.
EXIF (Exchangeable Image File Format) is the block of capture metadata that cameras and phones embed into image files—exposure, lens, timestamps, even GPS—using a TIFF-style tag system packaged inside formats like JPEG and TIFF. It’s essential for searchability, sorting, and automation across photo libraries and workflows, but it can also be an inadvertent leak path if shared carelessly (ExifTool andExiv2 make this easy to inspect).
At a low level, EXIF reuses TIFF’s Image File Directory (IFD) structure and, in JPEG, lives inside the APP1 marker (0xFFE1), effectively nesting a little TIFF inside a JPEG container (JFIF overview;CIPA spec portal). The official specification—CIPA DC-008 (EXIF), currently at 3.x—documents the IFD layout, tag types, and constraints (CIPA DC-008;spec summary). EXIF defines a dedicated GPS sub-IFD (tag 0x8825) and an Interoperability IFD (0xA005) (Exif tag tables).
Packaging details matter. Typical JPEGs start with a JFIF APP0 segment, followed by EXIF in APP1; older readers expect JFIF first, while modern libraries happily parse both (APP segment notes). Real-world parsers sometimes assume APP order or size limits that the spec doesn’t require, which is why tool authors document quirks and edge cases (Exiv2 metadata guide;ExifTool docs).
EXIF isn’t confined to JPEG/TIFF. The PNG ecosystem standardized the eXIf chunk to carry EXIF in PNG (support is growing, and chunk ordering relative to IDAT can matter in some implementations). WebP, a RIFF-based format, accommodates EXIF, XMP, and ICC in dedicated chunks (WebP RIFF container;libwebp). On Apple platforms, Image I/O preserves EXIF when converting to HEIC/HEIF, alongside XMP and maker data (kCGImagePropertyExifDictionary).
If you’ve ever wondered how apps infer camera settings, EXIF’s tag map is the answer: Make, Model,FNumber, ExposureTime, ISOSpeedRatings, FocalLength, MeteringMode, and more live in the primary and EXIF sub-IFDs (Exif tags;Exiv2 tags). Apple exposes these via Image I/O constants like ExifFNumber and GPSDictionary. On Android, AndroidX ExifInterface reads/writes EXIF across JPEG, PNG, WebP, and HEIF.
Orientation, Time, and Other Gotchas
Orientation deserves special mention. Most devices store pixels “as shot” and record a tag telling viewers how to rotate on display. That’s tag 274 (Orientation) with values like 1 (normal), 6 (90° CW), 3 (180°), 8 (270°). Failure to honor or update this tag leads to sideways photos, thumbnail mismatches, and downstream ML errors (Orientation tag;practical guide). Pipelines often normalize by physically rotating pixels and setting Orientation=1(ExifTool).
Timekeeping is trickier than it looks. Historic tags like DateTimeOriginal lack timezone, which makes cross-border shoots ambiguous. Newer tags add timezone companions—e.g., OffsetTimeOriginal—so software can record DateTimeOriginal plus a UTC offset (e.g., -07:00) for sane ordering and geocorrelation (OffsetTime* tags;tag overview).
EXIF vs. IPTC vs. XMP
EXIF coexists—and sometimes overlaps—with IPTC Photo Metadata (titles, creators, rights, subjects) and XMP, Adobe’s RDF-based framework standardized as ISO 16684-1. In practice, well-behaved software reconciles camera-authored EXIF with user-authored IPTC/XMP without discarding either (IPTC guidance;LoC on XMP;LoC on EXIF).
Privacy & Security
Privacy is where EXIF gets controversial. Geotags and device serials have outed sensitive locations more than once; a canonical example is the 2012 Vice photo of John McAfee, where EXIF GPS coordinates reportedly revealed his whereabouts (Wired;The Guardian). Many social platforms remove most EXIF on upload, but behavior varies and changes over time—verify by downloading your own posts and inspecting them with a tool (Twitter media help;Facebook help;Instagram help).
Security researchers also watch EXIF parsers closely. Vulnerabilities in widely used libraries (e.g., libexif) have included buffer overflows and OOB reads triggered by malformed tags—easy to craft because EXIF is structured binary in a predictable place (advisories;NVD search). Keep your metadata libraries patched and sandbox image processing if you ingest untrusted files.
Practical Workflow Tips
- Be deliberate about location: disable camera geotagging when appropriate, or strip GPS on export; keep a private original if you need the data later (ExifTool;Exiv2 CLI).
- Normalize orientation and timestamps in pipelines, ideally writing physical rotation and removing ambiguous tags (or adding OffsetTime*). (Orientation;OffsetTime*).
- Preserve descriptive metadata (credits/rights) by mapping EXIF↔IPTC↔XMP according to current IPTC guidance and prefer XMP for rich, extensible fields.
- For PNG/WebP/HEIF, verify your libraries actually read/write the modern EXIF/XMP locations; don’t assume parity with JPEG (PNG eXIf;WebP container;Image I/O).
- Keep dependencies updated; metadata is a frequent parser attack surface (libexif advisories).
Used thoughtfully, EXIF is connective tissue that powers photo catalogs, rights workflows, and computer-vision pipelines; used naively, it’s a breadcrumb trail you might not mean to share. The good news: the ecosystem—specs, OS APIs, and tools—gives you the control you need (CIPA EXIF;ExifTool;Exiv2;IPTC;XMP).
Further reading & references
- CIPA EXIF DC-008 (spec portal)
- ExifTool tag reference (EXIF) • JPEG APP segments
- Exiv2 tag reference • Metadata overview
- PNG: eXIf ancillary chunk
- WebP RIFF container & metadata
- Apple Image I/O • kCGImagePropertyExifDictionary
- AndroidX ExifInterface
- IPTC Photo Metadata
- Adobe XMP (ISO 16684-1)
- Library of Congress: EXIF format • Library of Congress: XMP
- libexif security advisories • NVD: libexif
- Wired on the McAfee EXIF incident
Frequently Asked Questions
What is EXIF data?
EXIF, or Exchangeable Image File Format, data includes various metadata about a photo such as camera settings, date and time the photo was taken, and potentially even location, if GPS is enabled.
How can I view EXIF data?
Most image viewers and editors (such as Adobe Photoshop, Windows Photo Viewer, etc.) allow you to view EXIF data. You simply have to open the properties or info panel.
Can EXIF data be edited?
Yes, EXIF data can be edited using certain software programs like Adobe Photoshop, Lightroom, or easy-to-use online resources. You can adjust or delete specific EXIF metadata fields with these tools.
Is there any privacy risk associated with EXIF data?
Yes. If GPS is enabled, location data embedded in the EXIF metadata could reveal sensitive geographical information about where the photo was taken. It's thus advised to remove or obfuscate this data when sharing photos.
How can I remove EXIF data?
Many software programs allow you to remove EXIF data. This process is often known as 'stripping' EXIF data. There exist several online tools that offer this functionality as well.
Do social media sites keep the EXIF data?
Most social media platforms like Facebook, Instagram, and Twitter automatically strip EXIF data from images to maintain user privacy.
What types of information does EXIF data provide?
EXIF data can include camera model, date and time of capture, focal length, exposure time, aperture, ISO setting, white balance setting, and GPS location, among other details.
Why is EXIF data useful for photographers?
For photographers, EXIF data can help understand exact settings used for a particular photograph. This information can help in improving techniques or replicating similar conditions in future shots.
Can all images contain EXIF data?
No, only images taken on devices that support EXIF metadata, like digital cameras and smartphones, will contain EXIF data.
Is there a standard format for EXIF data?
Yes, EXIF data follows a standard set by the Japan Electronic Industries Development Association (JEIDA). However, specific manufacturers may include additional proprietary information.
What is the DPX format?
SMTPE 268M-2003 (DPX 2.0) image
The Digital Picture Exchange (DPX) format is an image file format specifically designed for the transfer of still frames and sequences between different equipment and applications in the film and television industry. Originating from Kodak's Cineon (.cin) file format, the DPX format was developed to standardize the exchange of film images and their metadata between digital intermediate (DI) systems, visual effects (VFX) applications, and color grading tools. The Society of Motion Picture and Television Engineers (SMPTE) standardized the DPX format under SMPTE 268M, ensuring comprehensive compatibility and broad acceptance in the industry.
DPX files are large, uncompressed bitmapped images that store image data in a straightforward manner, allowing for high-quality, high-resolution pictures necessary for professional film and television production. They are capable of storing image data at various resolutions, aspect ratios, and color depths, which makes them incredibly versatile. Typically, DPX files use a 10-bit log or 16-bit linear color depth to accommodate the high dynamic range required in professional video and film workflows. This capability ensures that DPX files can represent a wide luminance range, from the darkest shadows to the brightest highlights, without data loss.
One of the key features of the DPX format is its support for extensive metadata. This metadata can include information about the film or video source, such as the film's type, production details, camera specifics, and the time code of the frame. Additionally, it can carry color management information, including color primaries, transfer characteristics, and colorimetric data. This wealth of metadata is critical for ensuring that images are accurately processed and reproduced across various devices and applications, maintaining consistency in color grading and effects application throughout the post-production process.
The DPX file header plays a crucial role in storing metadata and guiding applications on how to interpret the image data properly. The header is divided into sections including file information, image information, orientation information, film information, and television information, each containing specific metadata types. For instance, the file information section contains general data like the version number of the DPX format and the file size, while the image information section details the image's resolution, aspect ratio, and color information.
In terms of technical specifics, DPX files can be saved in either big-endian or little-endian byte order, making them adaptable to different computing environments. A distinctive feature of the DPX format is the ability to store multiple images within a single file, facilitating the representation of stereoscopic (3D) content or sequences of images for animation and effects work. This feature underscores the format's design for flexibility in complex production workflows, enabling seamless integration and exchange of content.
The DPX format supports various color models, including RGB, CIE XYZ, and YCbCr, allowing for compatibility with a wide range of input and output devices. For RGB images, each channel (Red, Green, and Blue) is typically stored separately, and there's support for an additional alpha channel for transparency information, crucial for compositing in visual effects. This flexibility in color representation ensures that DPX files can be used in almost any digital imaging process, from initial capture through to final delivery.
Compression is not a core feature of the DPX format, as it aims to preserve the utmost image fidelity and detail for professional use. However, to manage the resulting large file sizes, especially when dealing with high-resolution or multi-image files, applications that use DPX often implement their own file handling and storage solutions. These solutions may include high-capacity, high-speed storage systems and efficient file transfer protocols to handle the substantial data volumes associated with DPX files efficiently.
DPX files are typically used in a linear color space, which means the values stored represent linear light levels. Working in a linear color space allows for more accurate computations and manipulations of light and color, which are essential in achieving photorealistic effects and high-quality image composites. Nonetheless, the support for log color spaces also caters to workflows that rely on film-like response curves, providing versatility in handling different types of source material and aesthetic choices.
Version control and revision handling are crucial in collaborative environments, and while the DPX format itself does not directly support versioning within the file structure, metadata fields in the header can be used to track version information, scene numbers, and take numbers. This approach allows teams to organize, manage, and retrieve specific versions of an image or sequence throughout the production pipeline, promoting efficiency and reducing the likelihood of errors or overwrites.
Beyond its technical specifications, the DPX format's significance lies in its role in bridging the gap between traditional film production and the digital post-production process. By providing a reliable, standardized format for image exchange, DPX facilitates the seamless integration of analog and digital elements within the filmmaking process. This integration is crucial for preserving the artistic intent of filmmakers while leveraging the creative and technical advantages of digital post-production techniques.
The adaptation and use of the DPX format in industry-standard software and hardware underline its importance. Major digital intermediate systems, visual effects software, and color grading tools support the DPX format, enabling a smooth workflow across different stages of production. The ability to handle DPX files is considered a baseline requirement for professional-grade software in the film and television industry, which speaks volumes about the format's pervasive influence.
Despite its strengths, the DPX format faces challenges, particularly related to the large file sizes and the need for substantial storage and bandwidth to manage these files effectively. The emergence of new image formats and codecs that offer high-quality imaging with compression options presents a competitive landscape. However, the DPX format's emphasis on uncompromised image quality, combined with its support for extensive metadata and industry-standard adoption, continues to make it a preferred choice for high-end production workflows.
Looking forward, the DPX format continues to evolve, with updates and revisions aimed at addressing the changing needs of the industry. These updates ensure it remains compatible with newer technologies and workflows while maintaining its core characteristics of high fidelity and flexibility. As the industry moves towards higher resolutions, increased dynamic range, and more complex production techniques, the DPX format's adaptability and support for advanced features will be key to its continued relevance.
In conclusion, the DPX image format stands as a pivotal tool in the professional film and television production landscape. Its design to preserve high image quality, support for extensive metadata, and adaptability across various workflows make it an indispensable asset. The DPX format exemplifies the intersection of artistic vision and technological advancement, facilitating the creation and manipulation of images in a way that respects both the craft of filmmaking and the demands of digital post-production. As the industry evolves, the DPX format's role in maintaining high standards of image fidelity and interoperability across different platforms and processes will undoubtedly continue to be of critical importance.
Supported formats
AAI.aai
AAI Dune image
AI.ai
Adobe Illustrator CS2
AVIF.avif
AV1 Image File Format
BAYER.bayer
Raw Bayer Image
BMP.bmp
Microsoft Windows bitmap image
CIN.cin
Cineon Image File
CLIP.clip
Image Clip Mask
CMYK.cmyk
Raw cyan, magenta, yellow, and black samples
CUR.cur
Microsoft icon
DCX.dcx
ZSoft IBM PC multi-page Paintbrush
DDS.dds
Microsoft DirectDraw Surface
DPX.dpx
SMTPE 268M-2003 (DPX 2.0) image
DXT1.dxt1
Microsoft DirectDraw Surface
EPDF.epdf
Encapsulated Portable Document Format
EPI.epi
Adobe Encapsulated PostScript Interchange format
EPS.eps
Adobe Encapsulated PostScript
EPSF.epsf
Adobe Encapsulated PostScript
EPSI.epsi
Adobe Encapsulated PostScript Interchange format
EPT.ept
Encapsulated PostScript with TIFF preview
EPT2.ept2
Encapsulated PostScript Level II with TIFF preview
EXR.exr
High dynamic-range (HDR) image
FF.ff
Farbfeld
FITS.fits
Flexible Image Transport System
GIF.gif
CompuServe graphics interchange format
HDR.hdr
High Dynamic Range image
HEIC.heic
High Efficiency Image Container
HRZ.hrz
Slow Scan TeleVision
ICO.ico
Microsoft icon
ICON.icon
Microsoft icon
J2C.j2c
JPEG-2000 codestream
J2K.j2k
JPEG-2000 codestream
JNG.jng
JPEG Network Graphics
JP2.jp2
JPEG-2000 File Format Syntax
JPE.jpe
Joint Photographic Experts Group JFIF format
JPEG.jpeg
Joint Photographic Experts Group JFIF format
JPG.jpg
Joint Photographic Experts Group JFIF format
JPM.jpm
JPEG-2000 File Format Syntax
JPS.jps
Joint Photographic Experts Group JPS format
JPT.jpt
JPEG-2000 File Format Syntax
JXL.jxl
JPEG XL image
MAP.map
Multi-resolution Seamless Image Database (MrSID)
MAT.mat
MATLAB level 5 image format
PAL.pal
Palm pixmap
PALM.palm
Palm pixmap
PAM.pam
Common 2-dimensional bitmap format
PBM.pbm
Portable bitmap format (black and white)
PCD.pcd
Photo CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
Palm Database ImageViewer Format
PDF.pdf
Portable Document Format
PDFA.pdfa
Portable Document Archive Format
PFM.pfm
Portable float format
PGM.pgm
Portable graymap format (gray scale)
PGX.pgx
JPEG 2000 uncompressed format
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
Joint Photographic Experts Group JFIF format
PNG.png
Portable Network Graphics
PNG00.png00
PNG inheriting bit-depth, color-type from original image
PNG24.png24
Opaque or binary transparent 24-bit RGB (zlib 1.2.11)
PNG32.png32
Opaque or binary transparent 32-bit RGBA
PNG48.png48
Opaque or binary transparent 48-bit RGB
PNG64.png64
Opaque or binary transparent 64-bit RGBA
PNG8.png8
Opaque or binary transparent 8-bit indexed
PNM.pnm
Portable anymap
PPM.ppm
Portable pixmap format (color)
PS.ps
Adobe PostScript file
PSB.psb
Adobe Large Document Format
PSD.psd
Adobe Photoshop bitmap
RGB.rgb
Raw red, green, and blue samples
RGBA.rgba
Raw red, green, blue, and alpha samples
RGBO.rgbo
Raw red, green, blue, and opacity samples
SIX.six
DEC SIXEL Graphics Format
SUN.sun
Sun Rasterfile
SVG.svg
Scalable Vector Graphics
TIFF.tiff
Tagged Image File Format
VDA.vda
Truevision Targa image
VIPS.vips
VIPS image
WBMP.wbmp
Wireless Bitmap (level 0) image
WEBP.webp
WebP Image Format
YUV.yuv
CCIR 601 4:1:1 or 4:2:2
Frequently asked questions
How does this work?
This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.
How long does it take to convert a file?
Conversions start instantly, and most files are converted in under a second. Larger files may take longer.
What happens to my files?
Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.
What file types can I convert?
We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.
How much does this cost?
This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.
Can I convert multiple files at once?
Yes! You can convert as many files as you want at once. Just select multiple files when you add them.