View EXIF metadata for any FITS

Unlimited images. Filesizes up to 2.5GB. For free, forever.

Private and secure

Everything happens in your browser. Your files never touch our servers.

Blazing fast

No uploading, no waiting. Convert the moment you drop a file.

Actually free

No account required. No hidden costs. No file size tricks.

EXIF (Exchangeable Image File Format) is the block of capture metadata that cameras and phones embed into image files—exposure, lens, timestamps, even GPS—using a TIFF-style tag system packaged inside formats like JPEG and TIFF. It’s essential for searchability, sorting, and automation across photo libraries and workflows, but it can also be an inadvertent leak path if shared carelessly (ExifTool andExiv2 make this easy to inspect).

At a low level, EXIF reuses TIFF’s Image File Directory (IFD) structure and, in JPEG, lives inside the APP1 marker (0xFFE1), effectively nesting a little TIFF inside a JPEG container (JFIF overview;CIPA spec portal). The official specification—CIPA DC-008 (EXIF), currently at 3.x—documents the IFD layout, tag types, and constraints (CIPA DC-008;spec summary). EXIF defines a dedicated GPS sub-IFD (tag 0x8825) and an Interoperability IFD (0xA005) (Exif tag tables).

Packaging details matter. Typical JPEGs start with a JFIF APP0 segment, followed by EXIF in APP1; older readers expect JFIF first, while modern libraries happily parse both (APP segment notes). Real-world parsers sometimes assume APP order or size limits that the spec doesn’t require, which is why tool authors document quirks and edge cases (Exiv2 metadata guide;ExifTool docs).

EXIF isn’t confined to JPEG/TIFF. The PNG ecosystem standardized the eXIf chunk to carry EXIF in PNG (support is growing, and chunk ordering relative to IDAT can matter in some implementations). WebP, a RIFF-based format, accommodates EXIF, XMP, and ICC in dedicated chunks (WebP RIFF container;libwebp). On Apple platforms, Image I/O preserves EXIF when converting to HEIC/HEIF, alongside XMP and maker data (kCGImagePropertyExifDictionary).

If you’ve ever wondered how apps infer camera settings, EXIF’s tag map is the answer: Make, Model,FNumber, ExposureTime, ISOSpeedRatings, FocalLength, MeteringMode, and more live in the primary and EXIF sub-IFDs (Exif tags;Exiv2 tags). Apple exposes these via Image I/O constants like ExifFNumber and GPSDictionary. On Android, AndroidX ExifInterface reads/writes EXIF across JPEG, PNG, WebP, and HEIF.

Orientation, Time, and Other Gotchas

Orientation deserves special mention. Most devices store pixels “as shot” and record a tag telling viewers how to rotate on display. That’s tag 274 (Orientation) with values like 1 (normal), 6 (90° CW), 3 (180°), 8 (270°). Failure to honor or update this tag leads to sideways photos, thumbnail mismatches, and downstream ML errors (Orientation tag;practical guide). Pipelines often normalize by physically rotating pixels and setting Orientation=1(ExifTool).

Timekeeping is trickier than it looks. Historic tags like DateTimeOriginal lack timezone, which makes cross-border shoots ambiguous. Newer tags add timezone companions—e.g., OffsetTimeOriginal—so software can record DateTimeOriginal plus a UTC offset (e.g., -07:00) for sane ordering and geocorrelation (OffsetTime* tags;tag overview).

EXIF vs. IPTC vs. XMP

EXIF coexists—and sometimes overlaps—with IPTC Photo Metadata (titles, creators, rights, subjects) and XMP, Adobe’s RDF-based framework standardized as ISO 16684-1. In practice, well-behaved software reconciles camera-authored EXIF with user-authored IPTC/XMP without discarding either (IPTC guidance;LoC on XMP;LoC on EXIF).

Privacy & Security

Privacy is where EXIF gets controversial. Geotags and device serials have outed sensitive locations more than once; a canonical example is the 2012 Vice photo of John McAfee, where EXIF GPS coordinates reportedly revealed his whereabouts (Wired;The Guardian). Many social platforms remove most EXIF on upload, but behavior varies and changes over time—verify by downloading your own posts and inspecting them with a tool (Twitter media help;Facebook help;Instagram help).

Security researchers also watch EXIF parsers closely. Vulnerabilities in widely used libraries (e.g., libexif) have included buffer overflows and OOB reads triggered by malformed tags—easy to craft because EXIF is structured binary in a predictable place (advisories;NVD search). Keep your metadata libraries patched and sandbox image processing if you ingest untrusted files.

Practical Workflow Tips

  • Be deliberate about location: disable camera geotagging when appropriate, or strip GPS on export; keep a private original if you need the data later (ExifTool;Exiv2 CLI).
  • Normalize orientation and timestamps in pipelines, ideally writing physical rotation and removing ambiguous tags (or adding OffsetTime*). (Orientation;OffsetTime*).
  • Preserve descriptive metadata (credits/rights) by mapping EXIF↔IPTC↔XMP according to current IPTC guidance and prefer XMP for rich, extensible fields.
  • For PNG/WebP/HEIF, verify your libraries actually read/write the modern EXIF/XMP locations; don’t assume parity with JPEG (PNG eXIf;WebP container;Image I/O).
  • Keep dependencies updated; metadata is a frequent parser attack surface (libexif advisories).

Used thoughtfully, EXIF is connective tissue that powers photo catalogs, rights workflows, and computer-vision pipelines; used naively, it’s a breadcrumb trail you might not mean to share. The good news: the ecosystem—specs, OS APIs, and tools—gives you the control you need (CIPA EXIF;ExifTool;Exiv2;IPTC;XMP).

Further reading & references

Frequently Asked Questions

What is EXIF data?

EXIF, or Exchangeable Image File Format, data includes various metadata about a photo such as camera settings, date and time the photo was taken, and potentially even location, if GPS is enabled.

How can I view EXIF data?

Most image viewers and editors (such as Adobe Photoshop, Windows Photo Viewer, etc.) allow you to view EXIF data. You simply have to open the properties or info panel.

Can EXIF data be edited?

Yes, EXIF data can be edited using certain software programs like Adobe Photoshop, Lightroom, or easy-to-use online resources. You can adjust or delete specific EXIF metadata fields with these tools.

Is there any privacy risk associated with EXIF data?

Yes. If GPS is enabled, location data embedded in the EXIF metadata could reveal sensitive geographical information about where the photo was taken. It's thus advised to remove or obfuscate this data when sharing photos.

How can I remove EXIF data?

Many software programs allow you to remove EXIF data. This process is often known as 'stripping' EXIF data. There exist several online tools that offer this functionality as well.

Do social media sites keep the EXIF data?

Most social media platforms like Facebook, Instagram, and Twitter automatically strip EXIF data from images to maintain user privacy.

What types of information does EXIF data provide?

EXIF data can include camera model, date and time of capture, focal length, exposure time, aperture, ISO setting, white balance setting, and GPS location, among other details.

Why is EXIF data useful for photographers?

For photographers, EXIF data can help understand exact settings used for a particular photograph. This information can help in improving techniques or replicating similar conditions in future shots.

Can all images contain EXIF data?

No, only images taken on devices that support EXIF metadata, like digital cameras and smartphones, will contain EXIF data.

Is there a standard format for EXIF data?

Yes, EXIF data follows a standard set by the Japan Electronic Industries Development Association (JEIDA). However, specific manufacturers may include additional proprietary information.

What is the FITS format?

Flexible Image Transport System

The Flexible Image Transport System (FITS) format is an open standard defining a digital file format useful for storage, transmission, and processing of scientific and other images. FITS is the most commonly used digital file format in astronomy. Unlike many image formats designed for specific types of images or devices, FITS is designed to be flexible, allowing it to store many types of scientific data, including images, spectra, and tables, in a single file. This versatility makes FITS not just an image format but a robust scientific data storage tool.

Originally developed in the late 1970s by astronomers and computer scientists who needed a standardized data format for data exchange and storage, FITS was designed to be self-documenting, machine-independent, and easily extendable to accommodate future needs. These foundational principles have allowed FITS to adapt over decades of technological advancements while remaining backwardly compatible, ensuring that data stored in FITS format decades ago can still be accessed and understood today.

A FITS file is composed of one or more 'Header Data Units' (HDUs), where each HDU consists of a header and a data section. The header contains a series of human-readable ASCII text lines, each of which describes an aspect of the data in the following section, such as its format, size, and other contextual information. This self-documenting feature is a significant advantage of the FITS format, as it embeds the data's context directly alongside the data itself, making FITS files more understandable and usable.

The data section of an HDU can contain a variety of data types, including arrays (such as images), tables, and even more complex structures. FITS supports multiple data types, such as integer and floating-point numbers, with different precision levels. This allows for the storage of raw observational data with high bit depth, crucial for scientific analysis and preserving the integrity of data through processing and analysis steps.

One of the key features of FITS is its support for N-dimensional arrays. While two-dimensional (2D) arrays are often used for image data, FITS can accommodate arrays of any dimensionality, making it suitable for a wide range of scientific data beyond simple images. For example, a three-dimensional (3D) FITS file might store a set of related 2D images as different planes in the third dimension, or it could store volumetric data directly.

FITS is also notable for its ability to store metadata extensively. The header of each HDU can contain 'keywords' which provide detailed descriptions of the data, including the time and date of observation, the observing instrument specifications, data processing history, and much more. This extensive metadata capability makes FITS files not just containers of data, but comprehensive records of the scientific observations and processes that generated them.

The FITS standard includes specific conventions and extensions for different types of data. For example, the 'Binary Table' extension enables the efficient storage of table data within a FITS file, including rows of heterogeneous data types. Another important extension is the 'World Coordinate System' (WCS), which provides a standardized way to define spatial (and sometimes temporal) coordinates related to the astronomical data. WCS keywords in the FITS header allow for precise mapping of image pixels to celestial coordinates, crucial for astronomical research.

To ensure interoperability and data integrity, the FITS standard is governed by a formal definition and continuously updated by the FITS Working Group, which consists of international experts in astronomy, computing, and data science. The standard is overseen by the International Astronomical Union (IAU), ensuring that FITS remains a global standard for astronomical data.

While FITS is designed to be self-documenting and extendable, it is not without its complexities. The flexible structure of FITS files means that software reading or writing FITS data must be capable of handling a wide variety of formats and data types. Additionally, the vast amount of possible metadata and the intricate conventions for its use can create a steep learning curve for those new to working with FITS files.

Despite these challenges, the FITS format's broad adoption and the availability of numerous libraries and tools across different programming languages have made working with FITS data accessible to a wide audience. Libraries such as CFITSIO (in C) and Astropy (in Python) provide comprehensive functionalities for reading, writing, and manipulating FITS files, further facilitating the format's use in scientific computing and research.

The widespread use of FITS and the extensive libraries and tools available have fostered a vibrant community of users and developers, contributing to continual improvements and updates to the FITS standard and associated software. This community-driven development ensures that FITS remains relevant and capable of meeting the evolving needs of scientific research.

One of the more innovative uses of the FITS format in recent years has been in the field of high-performance computing (HPC) and big data analytics within astronomy. As telescopes and sensors have become more capable, the volume of astronomical data has exploded. FITS has been adapted to these changes, with new tools and libraries developed to handle the increased data volumes efficiently, making it a key component in the data processing pipelines of major astronomical surveys.

The FITS format's ability to store and organize complex, multidimensional data with extensive metadata has also seen it find applications beyond astronomy. Fields such as medical imaging, geosciences, and even digital preservation have adopted FITS for various data storage needs, benefiting from its robustness, flexibility, and self-documenting nature. This broad applicability demonstrates the strength of the format's foundational principles.

Looking forward, the continued evolution of the FITS format will likely be influenced by the needs of emerging scientific disciplines and the ongoing explosion of digital data. Enhancements in areas such as data compression, improved support for complex data structures, and even more advanced metadata capabilities could further extend FITS's utility. The open and extensible nature of the FITS standard, combined with its strong governance and vibrant community, positions it well to meet these future challenges.

In conclusion, the Flexible Image Transport System (FITS) format represents a cornerstone of scientific data storage, particularly in astronomy. Designed with the principles of flexibility, self-documentation, and extendability at its core, FITS has successfully adapted to over four decades of advancements in computing and data science. Its ability to store varied types of data, from simple images to complex, multidimensional datasets with extensive metadata, makes FITS a uniquely powerful tool for the scientific community. As technology continues to evolve, the FITS format, supported by a global community of users and developers, is well poised to remain a critical asset for research and data management in astronomy and beyond.

Supported formats

AAI.aai

AAI Dune image

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 Image File Format

BAYER.bayer

Raw Bayer Image

BMP.bmp

Microsoft Windows bitmap image

CIN.cin

Cineon Image File

CLIP.clip

Image Clip Mask

CMYK.cmyk

Raw cyan, magenta, yellow, and black samples

CUR.cur

Microsoft icon

DCX.dcx

ZSoft IBM PC multi-page Paintbrush

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) image

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Encapsulated Portable Document Format

EPI.epi

Adobe Encapsulated PostScript Interchange format

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

Adobe Encapsulated PostScript Interchange format

EPT.ept

Encapsulated PostScript with TIFF preview

EPT2.ept2

Encapsulated PostScript Level II with TIFF preview

EXR.exr

High dynamic-range (HDR) image

FF.ff

Farbfeld

FITS.fits

Flexible Image Transport System

GIF.gif

CompuServe graphics interchange format

HDR.hdr

High Dynamic Range image

HEIC.heic

High Efficiency Image Container

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Microsoft icon

ICON.icon

Microsoft icon

J2C.j2c

JPEG-2000 codestream

J2K.j2k

JPEG-2000 codestream

JNG.jng

JPEG Network Graphics

JP2.jp2

JPEG-2000 File Format Syntax

JPE.jpe

Joint Photographic Experts Group JFIF format

JPEG.jpeg

Joint Photographic Experts Group JFIF format

JPG.jpg

Joint Photographic Experts Group JFIF format

JPM.jpm

JPEG-2000 File Format Syntax

JPS.jps

Joint Photographic Experts Group JPS format

JPT.jpt

JPEG-2000 File Format Syntax

JXL.jxl

JPEG XL image

MAP.map

Multi-resolution Seamless Image Database (MrSID)

MAT.mat

MATLAB level 5 image format

PAL.pal

Palm pixmap

PALM.palm

Palm pixmap

PAM.pam

Common 2-dimensional bitmap format

PBM.pbm

Portable bitmap format (black and white)

PCD.pcd

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Palm Database ImageViewer Format

PDF.pdf

Portable Document Format

PDFA.pdfa

Portable Document Archive Format

PFM.pfm

Portable float format

PGM.pgm

Portable graymap format (gray scale)

PGX.pgx

JPEG 2000 uncompressed format

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Joint Photographic Experts Group JFIF format

PNG.png

Portable Network Graphics

PNG00.png00

PNG inheriting bit-depth, color-type from original image

PNG24.png24

Opaque or binary transparent 24-bit RGB (zlib 1.2.11)

PNG32.png32

Opaque or binary transparent 32-bit RGBA

PNG48.png48

Opaque or binary transparent 48-bit RGB

PNG64.png64

Opaque or binary transparent 64-bit RGBA

PNG8.png8

Opaque or binary transparent 8-bit indexed

PNM.pnm

Portable anymap

PPM.ppm

Portable pixmap format (color)

PS.ps

Adobe PostScript file

PSB.psb

Adobe Large Document Format

PSD.psd

Adobe Photoshop bitmap

RGB.rgb

Raw red, green, and blue samples

RGBA.rgba

Raw red, green, blue, and alpha samples

RGBO.rgbo

Raw red, green, blue, and opacity samples

SIX.six

DEC SIXEL Graphics Format

SUN.sun

Sun Rasterfile

SVG.svg

Scalable Vector Graphics

TIFF.tiff

Tagged Image File Format

VDA.vda

Truevision Targa image

VIPS.vips

VIPS image

WBMP.wbmp

Wireless Bitmap (level 0) image

WEBP.webp

WebP Image Format

YUV.yuv

CCIR 601 4:1:1 or 4:2:2

Frequently asked questions

How does this work?

This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.

How long does it take to convert a file?

Conversions start instantly, and most files are converted in under a second. Larger files may take longer.

What happens to my files?

Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.

What file types can I convert?

We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.

How much does this cost?

This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.

Can I convert multiple files at once?

Yes! You can convert as many files as you want at once. Just select multiple files when you add them.