View EXIF metadata for any PS

Unlimited images. Filesizes up to 2.5GB. For free, forever.

Private and secure

Everything happens in your browser. Your files never touch our servers.

Blazing fast

No uploading, no waiting. Convert the moment you drop a file.

Actually free

No account required. No hidden costs. No file size tricks.

EXIF (Exchangeable Image File Format) is the block of capture metadata that cameras and phones embed into image files—exposure, lens, timestamps, even GPS—using a TIFF-style tag system packaged inside formats like JPEG and TIFF. It’s essential for searchability, sorting, and automation across photo libraries and workflows, but it can also be an inadvertent leak path if shared carelessly (ExifTool andExiv2 make this easy to inspect).

At a low level, EXIF reuses TIFF’s Image File Directory (IFD) structure and, in JPEG, lives inside the APP1 marker (0xFFE1), effectively nesting a little TIFF inside a JPEG container (JFIF overview;CIPA spec portal). The official specification—CIPA DC-008 (EXIF), currently at 3.x—documents the IFD layout, tag types, and constraints (CIPA DC-008;spec summary). EXIF defines a dedicated GPS sub-IFD (tag 0x8825) and an Interoperability IFD (0xA005) (Exif tag tables).

Packaging details matter. Typical JPEGs start with a JFIF APP0 segment, followed by EXIF in APP1; older readers expect JFIF first, while modern libraries happily parse both (APP segment notes). Real-world parsers sometimes assume APP order or size limits that the spec doesn’t require, which is why tool authors document quirks and edge cases (Exiv2 metadata guide;ExifTool docs).

EXIF isn’t confined to JPEG/TIFF. The PNG ecosystem standardized the eXIf chunk to carry EXIF in PNG (support is growing, and chunk ordering relative to IDAT can matter in some implementations). WebP, a RIFF-based format, accommodates EXIF, XMP, and ICC in dedicated chunks (WebP RIFF container;libwebp). On Apple platforms, Image I/O preserves EXIF when converting to HEIC/HEIF, alongside XMP and maker data (kCGImagePropertyExifDictionary).

If you’ve ever wondered how apps infer camera settings, EXIF’s tag map is the answer: Make, Model,FNumber, ExposureTime, ISOSpeedRatings, FocalLength, MeteringMode, and more live in the primary and EXIF sub-IFDs (Exif tags;Exiv2 tags). Apple exposes these via Image I/O constants like ExifFNumber and GPSDictionary. On Android, AndroidX ExifInterface reads/writes EXIF across JPEG, PNG, WebP, and HEIF.

Orientation, Time, and Other Gotchas

Orientation deserves special mention. Most devices store pixels “as shot” and record a tag telling viewers how to rotate on display. That’s tag 274 (Orientation) with values like 1 (normal), 6 (90° CW), 3 (180°), 8 (270°). Failure to honor or update this tag leads to sideways photos, thumbnail mismatches, and downstream ML errors (Orientation tag;practical guide). Pipelines often normalize by physically rotating pixels and setting Orientation=1(ExifTool).

Timekeeping is trickier than it looks. Historic tags like DateTimeOriginal lack timezone, which makes cross-border shoots ambiguous. Newer tags add timezone companions—e.g., OffsetTimeOriginal—so software can record DateTimeOriginal plus a UTC offset (e.g., -07:00) for sane ordering and geocorrelation (OffsetTime* tags;tag overview).

EXIF vs. IPTC vs. XMP

EXIF coexists—and sometimes overlaps—with IPTC Photo Metadata (titles, creators, rights, subjects) and XMP, Adobe’s RDF-based framework standardized as ISO 16684-1. In practice, well-behaved software reconciles camera-authored EXIF with user-authored IPTC/XMP without discarding either (IPTC guidance;LoC on XMP;LoC on EXIF).

Privacy & Security

Privacy is where EXIF gets controversial. Geotags and device serials have outed sensitive locations more than once; a canonical example is the 2012 Vice photo of John McAfee, where EXIF GPS coordinates reportedly revealed his whereabouts (Wired;The Guardian). Many social platforms remove most EXIF on upload, but behavior varies and changes over time—verify by downloading your own posts and inspecting them with a tool (Twitter media help;Facebook help;Instagram help).

Security researchers also watch EXIF parsers closely. Vulnerabilities in widely used libraries (e.g., libexif) have included buffer overflows and OOB reads triggered by malformed tags—easy to craft because EXIF is structured binary in a predictable place (advisories;NVD search). Keep your metadata libraries patched and sandbox image processing if you ingest untrusted files.

Practical Workflow Tips

  • Be deliberate about location: disable camera geotagging when appropriate, or strip GPS on export; keep a private original if you need the data later (ExifTool;Exiv2 CLI).
  • Normalize orientation and timestamps in pipelines, ideally writing physical rotation and removing ambiguous tags (or adding OffsetTime*). (Orientation;OffsetTime*).
  • Preserve descriptive metadata (credits/rights) by mapping EXIF↔IPTC↔XMP according to current IPTC guidance and prefer XMP for rich, extensible fields.
  • For PNG/WebP/HEIF, verify your libraries actually read/write the modern EXIF/XMP locations; don’t assume parity with JPEG (PNG eXIf;WebP container;Image I/O).
  • Keep dependencies updated; metadata is a frequent parser attack surface (libexif advisories).

Used thoughtfully, EXIF is connective tissue that powers photo catalogs, rights workflows, and computer-vision pipelines; used naively, it’s a breadcrumb trail you might not mean to share. The good news: the ecosystem—specs, OS APIs, and tools—gives you the control you need (CIPA EXIF;ExifTool;Exiv2;IPTC;XMP).

Further reading & references

Frequently Asked Questions

What is EXIF data?

EXIF, or Exchangeable Image File Format, data includes various metadata about a photo such as camera settings, date and time the photo was taken, and potentially even location, if GPS is enabled.

How can I view EXIF data?

Most image viewers and editors (such as Adobe Photoshop, Windows Photo Viewer, etc.) allow you to view EXIF data. You simply have to open the properties or info panel.

Can EXIF data be edited?

Yes, EXIF data can be edited using certain software programs like Adobe Photoshop, Lightroom, or easy-to-use online resources. You can adjust or delete specific EXIF metadata fields with these tools.

Is there any privacy risk associated with EXIF data?

Yes. If GPS is enabled, location data embedded in the EXIF metadata could reveal sensitive geographical information about where the photo was taken. It's thus advised to remove or obfuscate this data when sharing photos.

How can I remove EXIF data?

Many software programs allow you to remove EXIF data. This process is often known as 'stripping' EXIF data. There exist several online tools that offer this functionality as well.

Do social media sites keep the EXIF data?

Most social media platforms like Facebook, Instagram, and Twitter automatically strip EXIF data from images to maintain user privacy.

What types of information does EXIF data provide?

EXIF data can include camera model, date and time of capture, focal length, exposure time, aperture, ISO setting, white balance setting, and GPS location, among other details.

Why is EXIF data useful for photographers?

For photographers, EXIF data can help understand exact settings used for a particular photograph. This information can help in improving techniques or replicating similar conditions in future shots.

Can all images contain EXIF data?

No, only images taken on devices that support EXIF metadata, like digital cameras and smartphones, will contain EXIF data.

Is there a standard format for EXIF data?

Yes, EXIF data follows a standard set by the Japan Electronic Industries Development Association (JEIDA). However, specific manufacturers may include additional proprietary information.

What is the PS format?

Adobe PostScript file

The PostScript (PS) image format is an intriguing facet of the digital imaging world, being more than just a format for representing images. Developed by Adobe in 1982, it's a dynamically typed, concatenative programming language primarily used for desktop publishing. Unlike many other image formats that are designed to store static pictures, the PS format encompasses a powerful scripting language that allows for the description of complex graphical layouts, text, and images in a device-independent manner. This flexibility has made it an industry standard in publishing and printing, despite the rise of newer formats.

At its core, the PS format is based on the concept of describing an image through PostScript commands, which are essentially instructions on how to draw the image. These commands can range from simple draw operations, like setting a line width, to complex image rendering and font manipulation. The beauty of PS is in its scalability; being vector-based means that images can be resized without any loss of quality, making it perfect for applications where precision and quality are paramount, such as professional printing and publishing.

One of the key features of the PS format is its programming capability, which includes variables, loops, and functions. This allows for the creation of complex graphical routines, such as generating patterns and textures on the fly, or dynamically modifying the appearance of an image based on external inputs. It's this flexibility that sets PS apart from many of its contemporaries, offering unprecedented control over the final output.

Despite its many advantages, the PS format is not without its challenges. The most notable is its complexity; mastering PostScript programming requires a non-trivial amount of effort and understanding of its syntax and operations. Furthermore, the execution of PS files can be resource-intensive, as each command must be interpreted and rendered, which can lead to performance issues on lower-end devices or with exceptionally complex documents.

Another challenge is accessibility. The sophistication of the PS format means that not every image viewer or editor can handle PS files. Usually, specialized software, such as Adobe Acrobat or Ghostscript, is required to view or manipulate these files, which can be a barrier for casual users or small businesses without access to such tools. Moreover, the process of creating or editing PS files typically involves a higher level of technical skill than is required for more straightforward, raster-based image formats.

Over the years, the PS format has evolved, with Adobe introducing several updates to enhance its functionality and ease of use. The most notable successor to the original PostScript is the Portable Document Format (PDF), also developed by Adobe. PDF builds upon the foundation laid by PostScript by encapsulating not just the instructions for rendering the document but also embedding the actual content, such as text and images, within the file. This embedded approach simplifies document exchange and viewing, as it ensures that the document appears the same regardless of the platform or software used to view it.

Despite the emergence of PDF and other modern formats, the PS format remains relevant in several professional and niche applications. Its ability to precisely control the layout and appearance of printed materials makes it indispensable in high-end publishing and printing industries. Moreover, its programming capabilities continue to be leveraged for automating complex layout tasks and for backward compatibility with legacy systems and documents.

Understanding the technical workings of the PS format begins with its file structure. A PS file is essentially a text file that contains a series of PostScript language commands. These commands are executed in sequence by a PostScript interpreter, typically found in printers or specialized software, which then generates the graphical output. The file can include a header section that identifies it as a PS file, followed by setup commands that define global settings, such as page size and resolution. The main body of the file contains the instructions for drawing shapes, text, and images, followed by a trailer section that signifies the end of the document.

In addition to basic graphics operations, the PS language supports advanced features such as clipping paths, gradient fills, and pattern generation. Clipping paths allow for complex image masking, enabling graphics to be restricted to specified areas. Gradient fills can be used to create smooth transitions between colors, enhancing the visual appeal of graphics. Pattern generation offers the ability to create repeated motifs, which is particularly useful for backgrounds and textures.

Another significant aspect of PS is its handling of fonts. PostScript fonts are stored as separate files and can be embedded within a PS file or referenced externally. This allows for high-quality text rendering, as the fonts are vector-based and thus scalable to any size without loss of quality. The PS format supports a range of font types, including Type 1 (outline fonts) and Type 3 (bitmap fonts), each suited to different rendering needs. The language also provides extensive control over text layout, including adjustments for kerning, leading, and tracking, which are critical for professional typography.

Color management is another area where the PS format shines. It incorporates complex models for specifying and managing colors, supporting both RGB and CMYK color spaces, among others. This enables precise control over how colors are rendered in the final output, which is essential for accurate color reproduction, particularly in the printing industry. The PS language includes commands for color space selection, color mapping, and halftoning, which are used to achieve the desired color effects and resolutions.

The interoperability of PS files with other formats is facilitated by conversion tools and software that can interpret PostScript commands and translate them into raster images or other vector formats. This allows PS files to be converted for use in a wider range of applications beyond high-end publishing and printing. However, the conversion process may sometimes lead to a loss of fidelity, especially when translating complex PS commands into a format with less graphical capability.

Security considerations are also pertinent to the PS format. Since it is a programming language, it theoretically could be used to execute malicious code on a system that processes PS files. Thus, it's important for interpreters and viewing software to implement appropriate security measures, such as sandboxing and code validation, to mitigate such risks. This highlights the dual nature of the PS format as both a document description language and a potential vector for security vulnerabilities.

In conclusion, the PostScript (PS) image format is a testament to the power of programmability in graphical design and document creation. Its combination of vector-based scalability, advanced graphical and typographic capabilities, and device-independent output makes it a standout choice for professional publishing and printing. While the complexity and resource requirements of PostScript can pose challenges, the format's flexibility and precision continue to make it valuable for specific applications where quality and control are paramount. As technology evolves, the legacy of PostScript persists, underpinning modern formats and continuing to influence the development of graphic design and desktop publishing standards.

Supported formats

AAI.aai

AAI Dune image

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 Image File Format

BAYER.bayer

Raw Bayer Image

BMP.bmp

Microsoft Windows bitmap image

CIN.cin

Cineon Image File

CLIP.clip

Image Clip Mask

CMYK.cmyk

Raw cyan, magenta, yellow, and black samples

CUR.cur

Microsoft icon

DCX.dcx

ZSoft IBM PC multi-page Paintbrush

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) image

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Encapsulated Portable Document Format

EPI.epi

Adobe Encapsulated PostScript Interchange format

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

Adobe Encapsulated PostScript Interchange format

EPT.ept

Encapsulated PostScript with TIFF preview

EPT2.ept2

Encapsulated PostScript Level II with TIFF preview

EXR.exr

High dynamic-range (HDR) image

FF.ff

Farbfeld

FITS.fits

Flexible Image Transport System

GIF.gif

CompuServe graphics interchange format

HDR.hdr

High Dynamic Range image

HEIC.heic

High Efficiency Image Container

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Microsoft icon

ICON.icon

Microsoft icon

J2C.j2c

JPEG-2000 codestream

J2K.j2k

JPEG-2000 codestream

JNG.jng

JPEG Network Graphics

JP2.jp2

JPEG-2000 File Format Syntax

JPE.jpe

Joint Photographic Experts Group JFIF format

JPEG.jpeg

Joint Photographic Experts Group JFIF format

JPG.jpg

Joint Photographic Experts Group JFIF format

JPM.jpm

JPEG-2000 File Format Syntax

JPS.jps

Joint Photographic Experts Group JPS format

JPT.jpt

JPEG-2000 File Format Syntax

JXL.jxl

JPEG XL image

MAP.map

Multi-resolution Seamless Image Database (MrSID)

MAT.mat

MATLAB level 5 image format

PAL.pal

Palm pixmap

PALM.palm

Palm pixmap

PAM.pam

Common 2-dimensional bitmap format

PBM.pbm

Portable bitmap format (black and white)

PCD.pcd

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Palm Database ImageViewer Format

PDF.pdf

Portable Document Format

PDFA.pdfa

Portable Document Archive Format

PFM.pfm

Portable float format

PGM.pgm

Portable graymap format (gray scale)

PGX.pgx

JPEG 2000 uncompressed format

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Joint Photographic Experts Group JFIF format

PNG.png

Portable Network Graphics

PNG00.png00

PNG inheriting bit-depth, color-type from original image

PNG24.png24

Opaque or binary transparent 24-bit RGB (zlib 1.2.11)

PNG32.png32

Opaque or binary transparent 32-bit RGBA

PNG48.png48

Opaque or binary transparent 48-bit RGB

PNG64.png64

Opaque or binary transparent 64-bit RGBA

PNG8.png8

Opaque or binary transparent 8-bit indexed

PNM.pnm

Portable anymap

PPM.ppm

Portable pixmap format (color)

PS.ps

Adobe PostScript file

PSB.psb

Adobe Large Document Format

PSD.psd

Adobe Photoshop bitmap

RGB.rgb

Raw red, green, and blue samples

RGBA.rgba

Raw red, green, blue, and alpha samples

RGBO.rgbo

Raw red, green, blue, and opacity samples

SIX.six

DEC SIXEL Graphics Format

SUN.sun

Sun Rasterfile

SVG.svg

Scalable Vector Graphics

TIFF.tiff

Tagged Image File Format

VDA.vda

Truevision Targa image

VIPS.vips

VIPS image

WBMP.wbmp

Wireless Bitmap (level 0) image

WEBP.webp

WebP Image Format

YUV.yuv

CCIR 601 4:1:1 or 4:2:2

Frequently asked questions

How does this work?

This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.

How long does it take to convert a file?

Conversions start instantly, and most files are converted in under a second. Larger files may take longer.

What happens to my files?

Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.

What file types can I convert?

We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.

How much does this cost?

This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.

Can I convert multiple files at once?

Yes! You can convert as many files as you want at once. Just select multiple files when you add them.