Voir RGBs

Voir n'importe quelle image dans votre navigateur. Tailles de fichiers jusqu'à 2,5 Go. Gratuit, pour toujours.

Tout en local

Notre convertisseur s'exécute dans votre navigateur, donc nous ne voyons jamais vos données.

Ultra rapide

Pas de téléversement de vos fichiers sur un serveur - les conversions commencent instantanément.

Sécurisé par défaut

Contrairement aux autres convertisseurs, vos fichiers ne sont jamais téléversés vers nous.

Qu'est-ce que le format RGB ?

Échantillons rouge, vert et bleu bruts

Le format d'image Quite OK (QOI) est un moyen simple mais efficace de stocker et de transmettre des images numériques. Proposé comme une alternative légère et plus rapide à des formats plus complexes comme PNG ou JPEG, QOI vise à fournir un format d'image facile à implémenter tout en offrant une compression et une vitesse compétitives. L'idée derrière QOI est de conserver la simplicité des processus d'encodage et de décodage, ce qui le rend particulièrement attrayant pour les scénarios où les ressources informatiques sont limitées ou lorsqu'une surcharge minimale est souhaitée.

À la base, le format QOI repose sur le principe de la compression sans perte. Cela signifie que lorsqu'une image est compressée au format QOI, puis décompressée pour retrouver sa forme originale, il n'y a aucune perte d'information ou dégradation de la qualité. Le format peut gérer des images avec jusqu'à 4 canaux par pixel (rouge, vert, bleu et alpha pour la transparence), ce qui le rend polyvalent pour une large gamme d'applications, des icônes simples aux photographies complexes avec transparence.

L'une des caractéristiques du format QOI est son mécanisme d'encodage et de décodage simplifié. Le format utilise un petit en-tête de taille fixe suivi d'une séquence d'opcodes qui décrivent les pixels de l'image. L'en-tête contient des métadonnées de base sur l'image, telles que sa largeur, sa hauteur et le nombre de canaux. Après l'en-tête, les données de pixel sont encodées à l'aide d'une série d'opcodes qui représentent directement les valeurs de pixel ou signifient une relation entre les pixels adjacents, comme la répétition ou une légère différence de couleur.

Les opcodes les plus couramment utilisés dans le format QOI incluent « QOI_OP_RGB », qui représente un pixel avec une nouvelle couleur unique ne correspondant pas au pixel précédent ; « QOI_OP_RGBA », pour les pixels avec de nouvelles couleurs et des valeurs alpha ; « QOI_OP_INDEX », qui fait référence à une couleur précédemment vue réutilisée pour le pixel actuel ; « QOI_OP_RUN », indiquant que la couleur du pixel actuel se répète un certain nombre de fois ; et « QOI_OP_DIFF », « QOI_OP_LUMA » et « QOI_OP_RGB », qui encodent les différences de couleur de différentes manières, optimisant pour les scénarios les plus courants où les pixels adjacents ont des couleurs similaires.

Une caractéristique remarquable du format QOI est sa fonction d'indexation. Le format maintient une « table de hachage » des 64 dernières couleurs uniques rencontrées. Lorsqu'une couleur de pixel apparaît et correspond à l'une de ces couleurs rencontrées précédemment, l'opcode « QOI_OP_INDEX » peut être utilisé, ce qui prend beaucoup moins d'espace que l'encodage de la valeur de couleur complète. Ce mécanisme est particulièrement efficace pour les images avec de grandes zones uniformes ou des motifs répétitifs, permettant une compression très efficace.

L'efficacité de la compression dans le format QOI est également obtenue grâce à l'utilisation de techniques d'encodage delta, en particulier avec les opcodes « QOI_OP_DIFF », « QOI_OP_LUMA » et « QOI_OP_RUN ». Ces opcodes tirent parti du fait que les pixels adjacents dans les images sont souvent similaires ou identiques. « QOI_OP_DIFF » encode de petites différences de couleur entre le pixel actuel et le pixel précédent, « QOI_OP_LUMA » est utilisé pour des variations de couleur légèrement plus complexes, et « QOI_OP_RUN » compresse des séquences de pixels identiques. En encodant ces relations au lieu de valeurs de pixels complètes, le format QOI peut réduire considérablement la quantité de données nécessaires pour représenter une image.

La simplicité du format QOI s'étend à son processus de décodage, qui est simple et rapide. Le décodage implique la lecture de l'en-tête pour établir les dimensions et les canaux de couleur de l'image, puis de parcourir les opcodes pour reconstruire les données de pixel. Chaque opcode correspond directement à des opérations spécifiques sur le tampon de pixels, telles que la définition de la couleur d'un pixel, la copie d'une couleur à partir de l'index ou la répétition d'une couleur. Ce mappage direct permet un décodage très efficace, rendant QOI très approprié pour les applications en temps réel où la vitesse est critique.

Un autre avantage du format QOI est sa facilité d'implémentation. La spécification est concise et ne nécessite qu'une compréhension de base des opérations de fichiers binaires et des concepts de base du traitement d'image. Sans dépendances externes ni algorithmes complexes, il peut être implémenté en quelques centaines de lignes de code dans la plupart des langages de programmation. Cela fait de QOI une option attrayante pour les développeurs à la recherche d'un format d'image simple, efficace et autonome pour leurs projets.

Malgré ses nombreux avantages, le format QOI présente des limites. Étant un format de compression sans perte, il n'offre pas le même niveau de compression que les formats avec perte comme JPEG pour les images photographiques. Cela signifie que même s'il est excellent pour les images avec des transitions de couleurs distinctes et des graphiques, il peut ne pas être l'option la plus économe en espace pour stocker ou transmettre des photographies haute résolution où une certaine perte de détails est acceptable au profit d'une taille de fichier réduite.

En comparaison avec d'autres formats d'image, QOI trouve un équilibre entre l'efficacité de la compression, la vitesse et la simplicité. Des formats comme PNG offrent une compression robuste et une large prise en charge sur toutes les plateformes, mais au prix d'une implémentation plus complexe et de temps de traitement plus lents. JPEG, tout en offrant une compression supérieure pour les photographies, sacrifie la qualité par une compression avec perte et nécessite un algorithme d'encodage et de décodage plus complexe. GIF est limité en profondeur de couleur et convient mieux aux animations simples. Ainsi, QOI occupe une niche pour ceux qui ont besoin d'une compression rapide et sans perte pour une large gamme d'applications.

L'adaptation et l'utilisation du format QOI dépendent fortement des exigences spécifiques du cas d'utilisation. Sa simplicité et sa rapidité le rendent idéal pour des applications telles que le développement de jeux, où les ressources doivent être chargées rapidement, ou pour les systèmes embarqués où les ressources informatiques et l'espace de stockage sont limités. De plus, pour les projets de développement logiciel où les dépendances externes sont une préoccupation, la nature autonome de QOI peut être très bénéfique.

En regardant vers l'avenir, le format QOI a le potentiel d'inspirer le développement de nouveaux formats d'image qui donnent la priorité à la facilité d'utilisation, à la vitesse et à une compression efficace. À mesure que la technologie d'imagerie numérique évolue et que les demandes de traitement plus rapide et de tailles de fichiers réduites augmentent, des formats comme QOI qui simplifient les processus d'encodage et de décodage tout en fournissant une compression efficace joueront probablement un rôle important dans l'évolution du paysage du stockage et de la transmission d'images numériques.

En conclusion, le format Quite OK Image présente une option convaincante pour de nombreuses applications d'imagerie numérique, grâce à son équilibre entre vitesse, efficacité de compression et simplicité. Bien qu'il ne remplace peut-être pas les formats plus établis dans tous les scénarios, il offre une alternative précieuse pour les situations où l'encodage et le décodage rapides, la facilité d'implémentation et la compression sans perte sont des priorités. À mesure que le paysage technologique continue d'évoluer, les principes sous-jacents au format QOI influenceront sans aucun doute les développements futurs dans la compression et le stockage d'images.

Formats supportés

AAI.aai

Image AAI Dune

AI.ai

Adobe Illustrator CS2

AVIF.avif

Format de fichier d'image AV1

AVS.avs

Image AVS X

BAYER.bayer

Image Bayer brute

BMP.bmp

Image bitmap Windows

CIN.cin

Fichier image Cineon

CLIP.clip

Masque d'image Clip

CMYK.cmyk

Échantillons cyan, magenta, jaune et noir bruts

CMYKA.cmyka

Échantillons cyan, magenta, jaune, noir et alpha bruts

CUR.cur

Icône Microsoft

DCX.dcx

ZSoft IBM PC Paintbrush multi-page

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

Image SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Format de document portable encapsulé

EPI.epi

Format d'échange encapsulé PostScript Adobe

EPS.eps

PostScript encapsulé Adobe

EPSF.epsf

PostScript encapsulé Adobe

EPSI.epsi

Format d'échange encapsulé PostScript Adobe

EPT.ept

PostScript encapsulé avec aperçu TIFF

EPT2.ept2

PostScript niveau II encapsulé avec aperçu TIFF

EXR.exr

Image à gamme dynamique élevée (HDR)

FARBFELD.ff

Farbfeld

FF.ff

Farbfeld

FITS.fits

Système de transport d'images flexible

GIF.gif

Format d'échange de graphiques CompuServe

GIF87.gif87

Format d'échange de graphiques CompuServe (version 87a)

GROUP4.group4

CCITT Groupe 4 brut

HDR.hdr

Image à gamme dynamique élevée

HRZ.hrz

Télévision à balayage lent

ICO.ico

Icône Microsoft

ICON.icon

Icône Microsoft

IPL.ipl

Image d'emplacement IP2

J2C.j2c

Flux JPEG-2000

J2K.j2k

Flux JPEG-2000

JNG.jng

JPEG Network Graphics

JP2.jp2

Syntaxe du format de fichier JPEG-2000

JPC.jpc

Flux JPEG-2000

JPE.jpe

Format JFIF du groupe mixte d'experts photographiques

JPEG.jpeg

Format JFIF du groupe mixte d'experts photographiques

JPG.jpg

Format JFIF du groupe mixte d'experts photographiques

JPM.jpm

Syntaxe du format de fichier JPEG-2000

JPS.jps

Format JPS du groupe mixte d'experts photographiques

JPT.jpt

Syntaxe du format de fichier JPEG-2000

JXL.jxl

Image JPEG XL

MAP.map

Base de données d'images multi-résolutions sans couture (MrSID)

MAT.mat

Format d'image MATLAB niveau 5

PAL.pal

Palette Palm

PALM.palm

Palette Palm

PAM.pam

Format de bitmap 2D commun

PBM.pbm

Format de bitmap portable (noir et blanc)

PCD.pcd

Photo CD

PCDS.pcds

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Format ImageViewer de base de données Palm

PDF.pdf

Format de document portable

PDFA.pdfa

Format d'archive de document portable

PFM.pfm

Format portable à virgule flottante

PGM.pgm

Format de bitmap portable (niveaux de gris)

PGX.pgx

Format JPEG 2000 non compressé

PICON.picon

Icône personnelle

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Format JFIF du groupe mixte d'experts photographiques

PNG.png

Portable Network Graphics

PNG00.png00

PNG héritant de la profondeur de bits, du type de couleur de l'image d'origine

PNG24.png24

24 bits RVB opaque ou transparent binaire (zlib 1.2.11)

PNG32.png32

32 bits RVB opaque ou transparent binaire

PNG48.png48

48 bits RVB opaque ou transparent binaire

PNG64.png64

64 bits RVB opaque ou transparent binaire

PNG8.png8

8 bits indexé opaque ou transparent binaire

PNM.pnm

Portable anymap

PPM.ppm

Format de pixmap portable (couleur)

PS.ps

Fichier PostScript Adobe

PSB.psb

Format de grand document Adobe

PSD.psd

Bitmap Photoshop Adobe

RGB.rgb

Échantillons rouge, vert et bleu bruts

RGBA.rgba

Échantillons rouge, vert, bleu et alpha bruts

RGBO.rgbo

Échantillons rouge, vert, bleu et opacité bruts

SIX.six

Format de graphiques SIXEL DEC

SUN.sun

Fichier Rasterfile Sun

SVG.svg

Graphiques vectoriels adaptables

SVGZ.svgz

Graphiques vectoriels adaptables compressés

TIFF.tiff

Format de fichier d'image balisée

VDA.vda

Image Truevision Targa

VIPS.vips

Image VIPS

WBMP.wbmp

Image sans fil Bitmap (niveau 0)

WEBP.webp

Format d'image WebP

YUV.yuv

CCIR 601 4:1:1 ou 4:2:2

Foire aux questions

Comment ça marche ?

Ce convertisseur fonctionne entièrement dans votre navigateur. Lorsque vous sélectionnez un fichier, il est lu en mémoire et converti dans le format sélectionné. Vous pouvez ensuite télécharger le fichier converti.

Combien de temps prend la conversion d'un fichier ?

Les conversions commencent instantanément, et la plupart des fichiers sont convertis en moins d'une seconde. Les fichiers plus volumineux peuvent prendre plus de temps.

Que deviennent mes fichiers ?

Vos fichiers ne sont jamais téléversés vers nos serveurs. Ils sont convertis dans votre navigateur, puis le fichier converti est téléchargé. Nous ne voyons jamais vos fichiers.

Quels types de fichiers puis-je convertir ?

Nous prenons en charge la conversion entre tous les formats d'image, y compris JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, et plus encore.

Combien cela coûte ?

Ce convertisseur est complètement gratuit, et le restera toujours. Parce qu'il fonctionne dans votre navigateur, nous n'avons pas besoin de payer pour des serveurs, donc nous n'avons pas besoin de vous faire payer.

Puis-je convertir plusieurs fichiers à la fois ?

Oui ! Vous pouvez convertir autant de fichiers que vous voulez simultanément. Il suffit de sélectionner plusieurs fichiers lorsque vous les ajoutez.