OCR कोई भी MAP
खींचें और छोड़ें या क्लिक करें चुनने के लिए
निजी और सुरक्षित
सब कुछ आपके ब्राउज़र में होता है। आपकी फ़ाइलें हमारे सर्वर को कभी नहीं छूती हैं।
अत्यंत तेज़
कोई अपलोडिंग नहीं, कोई प्रतीक्षा नहीं। फ़ाइल छोड़ते ही कनवर्ट करें।
वास्तव में मुफ्त
कोई खाता आवश्यक नहीं। कोई छिपी हुई लागत नहीं। कोई फ़ाइल आकार की चाल नहीं।
ऑप्टिकल कैरेक्टर रिकॉग्निशन (ओसीआर) टेक्स्ट की छवियों - स्कैन, स्मार्टफोन फोटो, पीडीएफ - को मशीन द्वारा पढ़े जा सकने वाले टेक्स्ट और संरचित डेटा में बदल देता है। आधुनिक ओसीआर एक पाइपलाइन है जो एक छवि को साफ करती है, टेक्स्ट ढूंढती है, उसे पढ़ ती है, और समृद्ध मेटाडेटा निर्यात करती है ताकि डाउनस्ट्रीम सिस्टम डेटा को खोज, अनुक्रमित या निकाल सकें। दो व्यापक रूप से उपयोग किए जाने वाले आउटपुट मानक हैं hOCR, टेक्स्ट और लेआउट के लिए एक एचटीएमएल माइक्रोफ़ॉर्मैट, और ALTO XML, एक पुस्तकालय/अभिलेखागार-उन्मुख स्कीमा; दोनों स्थितियों, पढ़ने के क्रम और अन्य लेआउट संकेतों को संरक्षित करते हैं और लोकप्रिय इंजनों द्वारा समर्थित हैं जैसे टेसरैक्ट.
पाइपलाइन का एक त्वरित दौरा
प्रीप्रोसेसिंग। ओसीआर की गुणवत्ता छवि की सफाई से शुरू होती है: ग्रेस्केल रूपांतरण, डिनोइज़िंग, थ्रेसहोल्डिंग (बिनारिज़ेशन), और डेस्क्यूइंग। कैनोनिकल ओपनसीवी ट्यूटोरियल वैश्विक, अनुक ूली और ओत्सु थ्रेसहोल्डिंग को कवर करते हैं - असमान प्रकाश या बिमोडल हिस्टोग्राम वाले दस्तावेज़ों के लिए स्टेपल। जब एक पृष्ठ के भीतर रोशनी बदलती है (फोन स्नैप्स सोचें), अनुकूली तरीके अक्सर एक ही वैश्विक थ्रेसहोल्ड से बेहतर प्रदर्शन करते हैं; ओत्सु हिस्टोग्राम का विश्लेषण करके स्वचालित रूप से एक थ्रेसहोल्ड चुनता है। झुकाव सुधार समान रूप से महत्वपूर्ण है: हफ-आधारित डेस्क्यूइंग (हफ लाइन ट्रांसफॉर्म) ओत्सु बिनारिज़ेशन के साथ मिलकर उत्पादन प्रीप्रोसेसिंग पाइपलाइनों में एक आम और प्रभावी नुस्खा है।
पहचान बनाम मान्यता। ओसीआर को आम तौर पर टेक्स्ट डिटेक्शन (टेक्स्ट कहाँ है ?) और टेक्स्ट रिकॉग्निशन (यह क्या कहता है?) में विभाजित किया जाता है। प्राकृतिक दृश्यो ं और कई स्कैन में, पूरी तरह से कनवल्शनल डिटेक्टर जैसे ईस्ट भारी प्रस्ताव चरणों के बिना कुशलतापूर्वक शब्द- या पंक्ति-स्तरीय चतुर्भुज की भविष्यवाणी करते हैं और आम टूलकिट में लागू किए जाते हैं (जैसे, ओपनसीवी का टेक्स्ट डिटेक्शन ट्यूटोरियल)। जटिल पृष्ठों (समाचार पत्र, फॉर्म, किताबें) पर, लाइनों/क्षेत्रों का विभाजन और पढ़ने के क्रम का अनुमान मायने रखता है:क्रैकेन पारंपरिक ज़ोन/लाइन सेगमेंटेशन और न्यूरल बेसलाइन सेगमेंटेशन को लागू करता है, जिसमें विभिन्न लिपियों और दिशाओं (LTR/RTL/ऊर्ध्वाधर) के लिए स्पष्ट समर्थन होता है।
मान्यता मॉडल। क्लासिक ओपन-सोर्स वर्कहॉर्स टेसरैक्ट (Google द्वारा ओपन-सोर्स, जिसकी जड़ें HP में हैं) एक कैरेक्टर क्लासिफायर से एक LSTM-आधारित अनुक्रम पहचानकर्ता में विकसित हुआ और खोज योग्य PDF, hOCR/ALTO-अनुकूल आउटपुट, और CLI से और भी बहुत कुछ उत्सर्जित कर सकता है। आधुनिक पहचानकर्ता पूर्व-खंडित वर्णों के बिना अनुक्रम मॉडलिंग पर भरोसा करते हैं। कनेक्शनिस्ट टेम्पोरल क्लासिफिकेशन (CTC) मौलिक बनी हुई है, जो इनपुट फ़ीचर अनुक्रमों और आउटपुट लेबल स्ट्रिंग्स के बीच संरेखण सीखती है; यह व्यापक रूप से लिखावट और दृश्य-पाठ पाइपलाइनों में उपयोग किया जाता है।
पिछले कुछ वर्षों में, ट्रांसफॉर्मर्स ने ओसीआर को नया रूप दिया है। TrOCR एक विज़न ट्रांसफॉर्मर एनकोडर और एक टेक्स्ट ट्रांसफॉर्मर डिकोडर का उपयोग करता है, जिसे बड़े सिंथेटिक कॉर्पोरा पर प्रशिक्षित किया जाता है और फिर वास्तविक डेटा पर फाइन-ट्यून किया जाता है, जिसमें मुद्रित, हस्तलिखित और दृश्य-पाठ बेंचमार्क में मजबूत प्रदर्शन होता है (यह भी देखें हगिंग फेस डॉक्स)। समानांतर में, कुछ सिस्टम डाउनस्ट्रीम समझने के लिए ओसीआर को दरकिनार करते हैं: डोनट (डॉक्यूमेंट अंडरस्टैंडिंग ट्रांसफॉर्मर) एक ओसीआर-मुक्त एनकोडर-डिकोडर है जो सीधे दस्तावेज़ छवियों से संरचित उत्तर (जैसे कुंजी-मूल्य JSON) आउटपुट करता है (रेपो, मॉडल कार्ड), जब एक अलग ओसीआर चरण एक IE सिस्टम को फीड करता है तो त्रुटि संचय से बचता है।
इंजन और पुस्तकालय
यदि आप कई लिपियों में बैटरी-शामिल टेक्स्ट रीडिंग चाहते हैं, EasyOCR 80+ भाषा मॉडल क े साथ एक सरल एपीआई प्रदान करता है, जो बॉक्स, टेक्स्ट और आत्मविश्वास लौटाता है - प्रोटोटाइप और गैर-लैटिन लिपियों के लिए आसान। ऐतिहासिक दस्तावेज़ों के लिए, क्रैकेन बेसलाइन सेगमेंटेशन और स्क्रिप्ट-अवेयर रीडिंग ऑर्डर के साथ चमकता है; लचीले लाइन-स्तरीय प्रशिक्षण के लिए, कैलामरी ओक्रॉपी वंश पर बनाता है (ओक्रॉपी) (मल्टी-)एलएसटीएम+सीटीसी पहचानकर्ताओं और कस्टम मॉडल को फाइन-ट्यून करने के लिए एक सीएलआई के साथ।
डेटासेट और बेंचमार्क
सामान्यीकरण डेटा पर निर्भर करता है। लिखावट के लिए, IAM लिखावट डेटाबेस प्रशिक्षण और मूल्यांकन के लिए लेखक-विविध अंग्रेजी वाक्य प्रदान करता है; यह लाइन और शब्द पहचान के लिए एक लंबे समय से चली आ रह ी संदर्भ सेट है। दृश्य पाठ के लिए, कोको-टेक्स्ट ने एमएस-कोको पर व्यापक एनोटेशन स्तरित किए, जिसमें मुद्रित/हस्तलिखित, सुपाठ्य/अपठनीय, लिपि और पूर्ण प्रतिलेखन के लिए लेबल थे (मूल परियोजना पृष्ठभी देखें)। यह क्षेत्र सिंथेटिक प्रीट्रेनिंग पर भी बहुत अधिक निर्भर करता है: सिंथटेक्स्ट इन द वाइल्ड यथार्थवादी ज्यामिति और प्रकाश के साथ तस्वीरों में पाठ प्रस्तुत करता है, डिटेक्टरों और पहचानकर्ताओं को प्रीट्रेन करने के लिए भारी मात्रा में डेटा प्रदान करता है (संदर्भ कोड और डेटा).
के तहत प्रतियोगिताएं ICDAR’s रोबस्ट रीडिंग मूल्यांकन को आधार बनाती हैं। हाल के कार्यों में एंड-टू-एंड डिटेक्शन/रीडिंग पर जोर दिया गया है और इसमें शब्दों को वाक्यांशों में जोड़ना शामिल है, जिसमें आधिकारिक कोड रिपोर्टिंग सटीकता/रिकॉल/एफ-स्कोर, इंटरसेक्शन-ओवर-यूनियन (IoU), और कैरेक्टर-लेवल एडिट-डिस्टेंस मेट्रिक्स - जो अभ्यासकर्ताओं को ट्रैक करना चाहिए, को दर्शाता है।
आउटपुट प्रारूप और डाउनस्ट्रीम उपयोग
ओसीआर शायद ही कभी सादे पाठ पर समाप्त होता है। अभिलेखागार और डिजिटल पुस्तकालय पसंद करते हैं ALTO XML क्योंकि यह सामग्री के साथ भौतिक लेआउट (निर्देशांक के साथ ब्लॉक/लाइनें/शब्द) को एन्कोड करता है, और यह METS पैकेजिंग के साथ अच्छी तरह से मेल खाता है। hOCR माइक्रोफ़ॉर्मैट, इसके विपरीत, ocr_line और ocrx_word जैसे क्लास का उपयोग करके HTML/CSS में उसी विचार को एम्बेड करता है, जि ससे वेब टूलिंग के साथ प्रदर्शन, संपादन और रूपांतरण करना आसान हो जाता है। टेसरैक्ट दोनों को उजागर करता है - जैसे, सीएलआई से सीधे एचओसीआर या खोज योग्य पीडीएफ बनाना (पीडीएफ आउटपुट गाइड); पाइथन रैपर जैसे pytesseract सुविधा जोड़ते हैं। hOCR और ALTO के बीच अनुवाद करने के लिए कन्वर्टर्स मौजूद हैं जब रिपॉजिटरी में निश्चित अंतर्ग्रहण मानक होते हैं - इस क्यूरेटेड सूची को देखें ओसीआर फ़ाइल-प्रारूप उपकरण.
व्यावहारिक मार्गदर्शन
- डेटा और सफाई से शुरू करें। यदि आपकी छवियां फोन फोटो या मिश्रित-गुणवत्ता वाले स्कैन हैं, तो किसी भी मॉडल ट्यूनिंग से पहले थ्रेसहोल्डिंग (अनुकूली और ओत्सु) और डेस्क्यू (हफ) में निवेश करें। आप अक्सर पहचानकर्ताओं को बदलने की तुलना में एक मजबूत प्रीप्रोसेसिंग रेसिपी से अधिक लाभ प्राप्त करेंगे।
- सही डिटेक्टर चुनें। नियमित कॉलम वाले स्कैन किए गए पृष्ठों के लिए, एक पेज सेपरेटर (ज़ोन → लाइनें) पर्याप्त हो सकता है; प्राकृतिक छवियों के लिए, ईस्ट जैसे सिंगल-शॉट डिटेक्टर मजबूत आधार रेखा हैं और कई टूलकिट में प्लग करते हैं (ओपनसीवी उदाहरण)।
- अपने पाठ से मेल खाने वाला एक पहचानकर्ता चुनें। मुद्रित लैटिन के लिए, टेसरैक्ट (एलएसटीएम/ओईएम) मजबूत और तेज़ है; बहु-लिपि या त्वरित प्रोटोटाइप के लिए, EasyOCR उत्पादक है; लिखावट या ऐतिहासिक टाइपफेस के लिए, क्रैकेन या कैलामरी पर विचार करें और फाइन-ट्यून करने की योजना बनाएं। यदि आपको दस्तावेज़ समझने (कुंजी-मूल्य निष्कर्षण, VQA) के लिए तंग युग्मन की आवश्यकता है, तो अपने स्कीमा पर TrOCR (OCR) बनाम डोनट (OCR-मुक्त) का मूल्यांकन करें - डोनट एक संपूर्ण एकीकरण चरण को हटा सकता है।
- जो मायने रखता है उसे मापें। एंड-टू-एंड सिस्टम के लिए, डिटेक्शन एफ-स्कोर और रिकॉग्निशन सीईआर/डब्ल्यूईआर (दोनों लेवेनस्टीन एडिट डिस्टेंस पर आधारित; देखें सीटीसी); लेआउट-भारी कार्यों के लिए, IoU/कठोरता और कैरेक्टर-स्तरीय सामान्यीकृत संपादन दूरी को ट्रैक करें जैसा कि ICDAR आरआरसी मूल्यांकन किट में है।
- समृद्ध आउटपुट निर्यात करें। पसंद करें hOCR /ALTO (या दोनों) ताकि आप निर्देशांक और पढ़ने के क्रम को बनाए रखें - खोज हिट हाइलाइटिंग, तालिका/फ़ील्ड निष्कर्षण, और प्रोवेनेंस के लिए महत्वपूर्ण। टेसरैक्ट का सीएलआई और pytesseract इसे एक-लाइनर बनाते हैं।
आगे देख रहे हैं
सबसे मजबूत प्रवृत्ति अभिसरण है: पहचान, मान्यता, भाषा मॉडलिंग, और यहां तक कि कार्य-विशिष्ट डिकोडिंग एकीकृत ट्रांसफार्मर स्टैक में विलीन हो रहे हैं। बड़े सिंथेटिक कॉर्पोरा पर प्री-ट्रेनिंग एक बल गुणक बना हुआ है। ओसीआर-मुक्त मॉडल आक्रामक रूप से प्रतिस्पर्धा करेंगे जहां लक्ष्य वर्बेटिम ट्रांसक्रिप्ट के बजाय संरचित आउटपुट है। ह ाइब्रिड परिनियोजन की भी अपेक्षा करें: एक हल्का डिटेक्टर और लंबे-फॉर्म टेक्स्ट के लिए एक TrOCR-शैली पहचानकर्ता, और फॉर्म और रसीदों के लिए एक डोनट-शैली मॉडल।
अतिरिक्त पठन और उपकरण
टेसरैक्ट (गिटहब) · टेसरैक्ट डॉक्स · hOCR स्पेक · ALTO पृष्ठभूमि · ईस्ट डिटेक्टर · ओपनसीवी टेक्स्ट डिटेक्शन · TrOCR · डोनट · कोको-टेक्स्ट · सिंथटेक्स्ट · क्रैकेन · कैलामरी OCR · ICDAR आरआरसी · pytesseract · IAM लिखावट · ओसीआर फ़ाइल-प्रारूप उपकरण · EasyOCR
अक्सर पूछे जाने वाले प्रश्न
OCR क्या है?
ऑप्टिकल कैरेक्टर रिकग्निशन (OCR) एक प्रौद्योगिकी है जिसका उपयोग विभिन्न प्रकार के दस्तावेज़ों, जैसे कि कागजी दस्तावेज़, PDF फ़ाइलें या डिजिटल कैमरा द्वारा कैप्चर की गई छवियों, को संपादन योग्य और खोजनीय डेटा में परिवर्तित करने के लिए किया जाता है।
OCR कैसे काम करता है?
OCR एक इनपुट छवि या दस्तावेज़ को स्कैन करता है, छवि को अलग-अलग अक्षरों में बांटता है, और पैटर्न पहचान या विशेषता पहचान का उपयोग करके प्रत्येक वर्ण की तुलना करता है।
OCR के कुछ व्यावहारिक अनुप्रयोग क्या हैं?
OCR का उपयोग विभिन्न क्षेत्रों और अनुप्रयोगों में किया जाता है, जैसे कि मुद्रित दस्तावेज़ों को डिजिटाइज़ करने, टेक्स्ट-टू-स्पीच सेवाओं को सक्षम करने, डेटा एंट्री प्रक्रियाओं को स्वचालित करने, और दृष्टिबाधित उपयोगकर्ताओं को टेक्स्ट के साथ बेहतर बातचीत करने सहायता करने।
क्या OCR हमेशा 100% सटीक होता है?
हालांकि OCR प्रौद्योगिकी में काफ़ी प्रगति हुई है, लेकिन यह अचूक नहीं है। सटीकता मूल दस्तावेज़ की गुणवत्ता और उपयोग किए जा रहे OCR सॉफ़्टवेयर की बारीकियों पर निर्भर कर सकती है।
क्या OCR लिखावट पहचान सकता है?
हालाँकि OCR मुद्रित टेक्स्ट के लिए मुख्य रूप से डिज़ाइन किया गया है, कुछ उन्नत OCR सिस्टम लिखावट पहचानने में भी सक्षम होते हैं। हालाँकि, आमतौर पर लिखावट की पहचान करने में कम सटीकता होती है क्योंकि व्यक्तिगत लेखन शैलियों में व्यापक भिन्नता होती है।
क्या OCR कई भाषाओं को पहचान सकता है?
हाँ, कई OCR सॉफ़्टवेयर सिस्टम कई भाषाओं को पहचान सकते हैं। हालाँकि, यह महत्वपूर्ण है कि आपके उपयोग में आने वाले सॉफ़्टवेयर द्वारा विशिष्ट भाषा का समर्थन किया जा रहा हो।
OCR और ICR में क्या अंतर है?
OCR का अर्थ ऑप्टिकल कैरेक्टर रिकग्निशन है और इसका उपयोग मुद्रित पाठ को पहचानने के लिए किया जाता है, जबकि ICR, या इंटेलिजेंट कैरेक्टर रिकग्निशन, अधिक उन्नत है और इसका उपयोग हस्तलिखित पाठ को पहचानने के लिए किया जाता है।
क्या OCR किसी भी फ़ॉन्ट और टेक्स्ट आकार के साथ काम करता है?
OCR स्पष्ट, आसानी स े पढ़ने वाले फ़ॉन्ट और मानक टेक्स्ट आकारों के साथ सबसे अच्छा काम करता है। हालांकि यह विभिन्न फ़ॉन्ट और आकारों के साथ काम कर सकता है, लेकिन असामान्य फ़ॉन्ट्स या बहुत छोटे टेक्स्ट आकारों के साथ काम करते समय सटीकता कम होने की प्रवृत्ति होती है।
OCR प्रौद्योगिकी की कमियां क्या हैं?
OCR को कम-रिज़ॉल्यूशन वाले दस्तावेज़ों, जटिल फ़ॉन्ट, खराब प्रिंट वाले पाठ, लिखावट, और ऐसी पृष्ठभूमि वाले दस्तावेज़ों के साथ समस्या हो सकती है जो पाठ के साथ हस्तक्षेप करती हैं। इसके अलावा, यह कई भाषाओं के साथ काम कर सकता है, लेकिन यह हर भाषा को पूरी तरह से कवर नहीं कर सकता है।
क्या OCR रंगीन पाठ या रंगीन बैकग्राउंड को स्कैन कर सकता है?
हाँ, OCR रंगीन टेक्स्ट और बैकग्राउंड को स्कैन कर सकता है, हालाँकि यह आमतौर पर उच्च-विपरीत रंग संयोजनों, जैसे कि ए क सफेद पृष्ठभूमि पर काले टेक्स्ट, के साथ अधिक प्रभावी होता है। टेक्स्ट और पृष्ठभूमि रंगों में पर्याप्त विपरीतता की कमी होने पर सटीकता कम हो सकती है।
MAP प्रारूप क्या है?
मल्टी-रिज़ॉल्यूशन सीमलेस इमेज डेटाबेस (MrSID)
MAP इमेज फॉर्मेट, भौगोलिक मैपिंग के संदर्भ में 'मैप' के अधिक सामान्य उपयोग से भ्रमित नहीं होना चाहिए, बिटमैप इमेज को स्टोर करने के लिए उपयोग किया जाने वाला एक अपेक्षाकृत अस्पष्ट फाइल फॉर्मेट है। यह JPEG, PNG, या GIF जैसे अधिक लोकप्रिय इमेज फॉर्मेट के रूप में व्यापक रूप से मान्यता प्राप्त या उपयोग नहीं किया जाता है, लेकिन इसकी अपनी विशेषताओं का एक सेट है जो इसे कुछ अनुप्रयोगों के लिए उपयुक्त बनाता है। MAP फॉर्मेट आमतौर पर इमेज डेटा से जुड़ा होता है जिसका उपयोग विभिन्न प्रकार की मैपिंग में किया जाता है, जैसे 3D मॉडल में टेक्सचर मैपिंग, या कुछ सॉफ़्टवेयर अनुप्रयोगों में जिन्हें इमेज एसेट के लिए एक विशिष्ट फॉर्मेट की आवश्यकता होती है।
MAP इमेज फॉर्मेट की एक प्रमुख विशेषता इमेज डेटा को इस तरह से स्टोर करने की क्षमता है जो त्वरित एक्सेस और हेरफेर के लिए अनुकूलित है, जो विशेष रूप से वीडियो गेम या सिमुलेशन जैसे रीयल-टाइम अनुप्रयोगों में उपयोगी है। यह एक सरल डेटा संरचना के उपयोग के माध्यम से प्राप्त किया जाता है जो पिक्सेल डेटा के कुशल पढ़ने और लिखने की अनुमति देता है। संपीड़न और अतिरिक्त मेटाडेटा शामिल करने वाले अधिक जटिल प्रारूपों के विपरीत, MAP फ़ाइलें अक्सर सरल होती हैं और संपीड़न का समर्थन नहीं कर सकती हैं या केवल इमेज गुणवत्ता को बनाए रखने के लिए दोषरहित संपीड़न का समर्थन कर सकती हैं।
MAP फ़ाइल की मूल संरचना में आमतौर पर एक हेडर शामिल होता है, जिसमें इमेज के बारे में जानक ारी होती है जैसे कि इसके आयाम (चौड़ाई और ऊंचाई), रंग की गहराई (प्रति पिक्सेल बिट्स की संख्या), और संभवतः एक रंग पैलेट यदि इमेज अनुक्रमित रंगों का उपयोग करता है। हेडर के बाद, पिक्सेल डेटा को एक प्रारूप में संग्रहीत किया जाता है जो निर्दिष्ट रंग की गहराई से मेल खाता है। उदाहरण के लिए, 8-बिट MAP इमेज में, प्रत्येक पिक्सेल का रंग एक बाइट द्वारा दर्शाया जाता है, जो रंग पैलेट में एक इंडेक्स से मेल खाता है।
उच्च रंग की गहराई के मामले में, जैसे कि 24-बिट या 32-बिट, प्रत्येक पिक्सेल का रंग कई बाइट्स द्वारा दर्शाया जाता है। 24-बिट इमेज के लिए, यह आमतौर पर प्रति पिक्सेल तीन बाइट होगा, जिसमें प्रत्येक बाइट रंग के लाल, हरे और नीले घटकों का प्रतिनिधित्व करता है। एक 32-बिट इमेज में अल्फा पारदर्शिता जानकारी के लिए एक अतिरिक्त बाइट शामिल हो सकता है, जो पारदर्शी या अर्ध-पारदर्शी पिक्सेल के प्रतिनिधित्व की अनुमत ि देता है।
MAP फ़ाइल में रंग पैलेट, जब मौजूद होता है, तो रंगों की एक सरणी होती है जो इमेज में उपयोग के लिए उपलब्ध होती है। पैलेट में प्रत्येक रंग को आमतौर पर 24-बिट मान द्वारा दर्शाया जाता है, यहाँ तक कि कम रंग की गहराई वाली इमेज में भी। यह अनुक्रमित इमेज के लिए रंगों की एक विस्तृत श्रृंखला उपलब्ध कराता है, जो सीमित रंग स्थानों के साथ काम करते समय या दोषपूर्ण संपीड़न का सहारा लिए बिना फ़ाइल आकार को कम करने का प्रयास करते समय विशेष रूप से उपयोगी हो सकता है।
MAP फॉर्मेट के फायदों में से एक इसकी सादगी है, जो इमेज को किसी एप्लिकेशन में उपयोग किए जाने पर तेज लोडिंग समय और न्यूनतम प्रोसेसिंग की अनुमति देता है। यह विशेष रूप से उन परिदृश्यों में महत्वपूर्ण है जहां प्रदर्शन महत्वपूर्ण है, जैसे 3D वातावरण में टेक्सचर प्रस्तुत करना। फॉर्मेट की सरल प्रकृति का मतलब है कि इसे जटिल डिकोडिंग एल्गोरिद म या मेटाडेटा से निपटने की आवश्यकता के बिना सॉफ़्टवेयर में आसानी से लागू किया जा सकता है।
हालाँकि, MAP फॉर्मेट की सादगी का यह भी मतलब है कि इसमें अधिक उन्नत इमेज फॉर्मेट में पाई जाने वाली कुछ विशेषताओं का अभाव है। उदाहरण के लिए, यह आमतौर पर परतों, उन्नत रंग प्रोफाइल या मेटाडेटा जैसे EXIF डेटा का समर्थन नहीं करता है जो JPEG या TIFF जैसे प्रारूपों में पाया जा सकता है। यह MAP फॉर्मेट को उन अनुप्रयोगों के लिए कम उपयुक्त बनाता है जहां ऐसी विशेषताएं आवश्यक हैं, जैसे कि पेशेवर फोटोग्राफी या इमेज संपादन में।
MAP फॉर्मेट की एक और सीमा यह है कि यह अन्य इमेज फॉर्मेट की तरह व्यापक रूप से समर्थित नहीं है। जबकि इसका उपयोग विशिष्ट सॉफ़्टवेयर अनुप्रयोगों या गेम इंजन में किया जा सकता है, यह आमतौर पर सामान्य इमेज व्यूअर या फोटो संपादन सॉफ़्टवेयर द्वारा समर्थित नहीं है। इससे MAP इमेज के साथ उस विशिष्ट संदर्भ के बाहर काम करना अधिक कठिन हो सकता है जिसमें उनका उपयोग करने का इरादा है।
अपनी सीमाओं के बावजूद, MAP फॉर्मेट कुछ विशिष्ट अनुप्रयोगों के लिए एक अच्छा विकल्प हो सकता है। उदाहरण के लिए, इसका उपयोग एम्बेडेड सिस्टम या अन्य वातावरण में किया जा सकता है जहां संसाधन सीमित हैं और फॉर्मेट की सादगी मेमोरी और प्रोसेसिंग पावर के कुशल उपयोग की अनुमति देती है। यह उन अनुप्रयोगों के लिए भी एक उपयुक्त विकल्प हो सकता है जिन्हें एक कस्टम इमेज फॉर्मेट की आवश्यकता होती है जिसमें विशिष्ट विशेषताएं होती हैं जो अधिक सामान्य प्रारूपों द्वारा पूरी नहीं होती हैं।
MAP इमेज के साथ काम करते समय, डेवलपर्स को अक्सर इन फ़ाइलों को बनाने, संपादित करने या कनवर्ट करने के लिए विशेष टूल का उपयोग करने या कस्टम कोड लिखने की आवश्यकता होती है। इसमें MAP फ़ाइल संरचना को पढ़ने और लिखने के लिए फ़ंक्शन लिखना, साथ ही पिक्सेल डे टा और रंग पैलेट में हेरफेर करने के लिए रूटीन शामिल हो सकते हैं। कुछ मामलों में, डेवलपर्स को अपने स्वयं के संपीड़न या डीकंप्रेसन एल्गोरिदम को भी लागू करने की आवश्यकता हो सकती है यदि उपयोग किए जा रहे MAP फॉर्मेट संपीड़न का समर्थन करता है।
फ़ाइल एक्सटेंशन के संदर्भ में, MAP इमेज विभिन्न प्रकार के एक्सटेंशन का उपयोग कर सकते हैं जो उस संदर्भ पर निर्भर करते हैं जिसमें उनका उपयोग किया जाता है। सामान्य एक्सटेंशन में .map, .mip, या अन्य शामिल हो सकते हैं जो सॉफ़्टवेयर या प्लेटफ़ॉर्म के लिए विशिष्ट हैं। डेवलपर्स के लिए यह महत्वपूर्ण है कि वे MAP फ़ाइलों की संगतता और उचित हैंडलिंग सुनिश्चित करने के लिए अपने विशेष डोमेन में उपयोग किए जाने वाले सम्मेलनों से अवगत हों।
MAP फॉर्मेट का उपयोग बड़ी एसेट पाइपलाइन के हिस्से के रूप में अन्य फ़ाइल स्वरूपों के संयोजन के साथ भी किया जा सकता है। उदाहरण के लिए, ए क 3D मॉडल फ़ाइल टेक्सचर के रूप में एक या अधिक MAP इमेज को संदर्भित कर सकती है, जिसमें MAP फ़ाइलों का उपयोग टेक्सचर डेटा को एक ऐसे प्रारूप में संग्रहीत करने के लिए किया जाता है जो रेंडरिंग इंजन के लिए अनुकूलित है। ऐसे मामलों में, MAP फ़ाइलें फ़ाइल स्वरूपों के एक बड़े पारिस्थितिकी तंत्र का हिस्सा होती हैं जो अंतिम दृश्य आउटपुट बनाने के लिए मिलकर काम करते हैं।
MAP फॉर्मेट के उपयोग पर विचार करते समय, सीमित समर्थन और सुविधाओं की संभावित कमियों के खिलाफ इसकी सादगी और प्रदर्शन के लाभों को तौलना महत्वपूर्ण है। उन परियोजनाओं के लिए जहां MAP फॉ
समर्थित प्रारूप
AAI.aai
AAI ड्यून छवि
AI.ai
एडोब इलस्ट्रेटर CS2
AVIF.avif
AV1 छवि फ़ाइल प्रारूप
BAYER.bayer
कच्ची बायर छवि
BMP.bmp
माइक्रोसॉफ्ट विंडोज बिटमैप छवि
CIN.cin
सिनियन छवि फ़ाइल
CLIP.clip
छवि क्लिप मास्क
CMYK.cmyk
कच्चे सायन, मैजेंटा, पीले, और काले नमूने
CUR.cur
माइक्रोसॉफ्ट आइकन
DCX.dcx
ZSoft IBM PC बहु-पृष्ठ पेंटब्रश
DDS.dds
माइक्रोसॉफ्ट डायरेक्टड्रॉ सर्फेस
DPX.dpx
SMTPE 268M-2003 (DPX 2.0) छवि
DXT1.dxt1
माइक्रोसॉफ्ट डायरेक्टड्रॉ सर्फेस
EPDF.epdf
एन्कैप्सुलेटेड पोर्टेबल डॉक्यूमेंट प्रारूप
EPI.epi
एडोब एन्कैप्सुलेटेड पोस्टस्क्रिप्ट इंटरचेंज प्रारूप
EPS.eps
एडोब एन्कैप्सुलेटेड पोस्टस्क्रिप्ट
EPSF.epsf
एडोब एन्कैप्सुलेटेड पोस्टस्क्रिप्ट
EPSI.epsi
एडोब एन्कैप्सुलेटेड पोस्टस्क्रिप्ट इंटरचेंज प्रारूप
EPT.ept
एन्कैप्सुलेटेड पोस्टस्क्रिप्ट टिफ पूर्वावलोकन के साथ
EPT2.ept2
एन्कैप्सुलेटेड पोस्टस्क्रिप्ट स्तर II टिफ पूर्वावलोकन के साथ
EXR.exr
उच्च डायनेमिक-रेंज (HDR) छवि
FF.ff
Farbfeld
FITS.fits
लचीला छवि परिवहन प्रणाली
GIF.gif
कम्प्यूसर्व ग्राफिक्स इंटरचेंज प्रारूप
HDR.hdr
उच्च डायनेमिक रेंज छवि
HEIC.heic
उच्च दक्षता छवि कंटेनर
HRZ.hrz
स्लो स्कैन टेलीविजन
ICO.ico
माइक्रोसॉफ्ट आइकन
ICON.icon
माइक्रोसॉफ्ट आइकन
J2C.j2c
JPEG-2000 codestream
J2K.j2k
JPEG-2000 codestream
JNG.jng
JPEG नेटवर्क ग्राफिक्स
JP2.jp2
JPEG-2000 फ़ाइल प्रारूप सिंटैक्स
JPE.jpe
ज्वाइंट फोटोग्राफिक एक्सपर्ट्स ग्रुप JFIF प्रारूप
JPEG.jpeg
ज्वाइंट फोटोग्राफिक एक्सपर्ट्स ग्रुप JFIF प्रारूप
JPG.jpg
ज्वाइंट फोटोग्राफिक एक्सपर्ट्स ग्रुप JFIF प्रारूप
JPM.jpm
JPEG-2000 फ़ाइल प्रारूप सिंटैक्स
JPS.jps
ज्वाइंट फोटोग्राफिक एक्सपर्ट्स ग्रुप JPS प्रारूप
JPT.jpt
JPEG-2000 फ़ाइल प्रारूप सिंटैक्स
JXL.jxl
JPEG XL छवि
MAP.map
मल्टी-रिज़ॉल्यूशन सीमलेस इमेज डेटाबेस (MrSID)
MAT.mat
MATLAB स्तर 5 छवि प्रारूप
PAL.pal
पाम पिक्समैप
PALM.palm
पाम पिक्समैप
PAM.pam
सामान्य 2-आयामी बिटमैप प्रारूप
PBM.pbm
पोर्टेबल बिटमैप प्रारूप (काला और सफेद)
PCD.pcd
फ़ोटो सीडी
PCT.pct
एप्पल मैकिंटोश क्विकड्रॉ / PICT
PCX.pcx
ZSoft IBM PC पेंटब्रश
PDB.pdb
पाम डाटाबेस ImageViewer प्रारूप
PDF.pdf
पोर्टेबल दस्तावेज़ प्रारूप
PDFA.pdfa
पोर्टेबल दस्तावेज़ संग्रहित प्रारूप
PFM.pfm
पोर्टेबल फ्लोट प्रारूप
PGM.pgm
पोर्टेबल ग्रेमैप प्रारूप (ग्रे स्केल)
PGX.pgx
JPEG 2000 असंपीड़ित प्रारूप
PICT.pict
एप्पल मैकिंटोश क्विकड्रॉ / PICT
PJPEG.pjpeg
ज्वाइंट फोटोग्राफिक एक्सपर्ट्स ग्रुप JFIF प्रारूप
PNG.png
पोर्टेबल नेटवर्क ग्राफिक्स
PNG00.png00
PNG मूल छवि से बिट-गहराई, रंग प्रकार वारिस
PNG24.png24
अपारदर्शी या बायनरी पारदर्शी 24-बिट RGB (zlib 1.2.11)
PNG32.png32
अपारदर्शी या बायनरी पारदर्शी 32-बिट RGBA
PNG48.png48
अपारदर्शी या बायनरी पारदर्शी 48-बिट RGB
PNG64.png64
अपारदर्शी या बायनरी पारदर्शी 64-बिट RGBA
PNG8.png8
अपारदर्शी या बायनरी पारदर्शी 8-बिट सूचीबद्ध
PNM.pnm
पोर्टेबल एनीमैप
PPM.ppm
पोर्टेबल पिक्समैप प्रारूप (रंग)
PS.ps
एडोब पोस्टस्क्रिप्ट फ़ाइल
PSB.psb
एडोब बड़े दस्तावेज़ प्रारूप
PSD.psd
एडोब फ़ोटोशॉप बिटमैप
RGB.rgb
कच्चे लाल, हरा, और नीले नमूने
RGBA.rgba
कच्चे लाल, हरा, नीला, और अल्फा नमूने
RGBO.rgbo
कच्चे लाल, हरा, नीला, और अपारदर्शिता नमूने
SIX.six
DEC SIXEL ग्राफिक्स प्रारूप
SUN.sun
सन रास्टरफ़ाइल
SVG.svg
स्केलेबल वेक्टर ग्राफिक्स
TIFF.tiff
टैग इमेज फ़ाइल प्रारूप
VDA.vda
ट्रूविजन तार्गा इमेज
VIPS.vips
VIPS इमेज
WBMP.wbmp
वायरलेस बिटमैप (स्तर 0) इमेज
WEBP.webp
WebP इमेज प्रारूप
YUV.yuv
CCIR 601 4:1:1 या 4:2:2
अक्सर पूछे जाने वाले प्रश्न
यह कैसे काम करता है?
यह कनवर्टर पूरी तरह से आपके ब्राउज़र में चलता है। जब आप किसी फ़ाइल का चयन करते हैं, तो उसे मेमोरी में पढ़ा जाता है और चयनित प्रारूप में परिवर्तित किया जाता है। फिर आप परिवर्तित फ़ाइल डाउनलोड कर सकते हैं।
किसी फ़ाइल को परिवर्तित करने में कितना समय लगता है?
रूपांतरण तुरंत शुरू हो जाते हैं, और अधिकांश फ़ाइलें एक सेकंड के भीतर परिवर्तित हो जाती हैं। बड़ी फ़ाइलों में अधिक समय लग सकता है।
मेरी फ़ाइलों का क्या होता है?
आपकी फाइलें कभी भी हमारे सर्वर पर अपलो ड नहीं की जाती हैं। वे आपके ब्राउज़र में परिवर्तित हो जाती हैं, और फिर परिवर्तित फ़ाइल डाउनलोड हो जाती है। हम आपकी फाइलें कभी नहीं देखते हैं।
मैं किस प्रकार की फाइलें परिवर्तित कर सकता हूं?
हम जेपीईजी, पीएनजी, जीआईएफ, वेबपी, एसवीजी, बीएमपी, টিআইএফএফ, और अधिक सहित सभी छवि प्रारूपों के बीच रूपांतरण का समर्थन करते हैं।
इसका कितना मूल्य है?
यह कनवर्टर पूरी तरह से मुफ्त है, और हमेशा मुफ्त रहेगा। क्योंकि यह आपके ब्राउज़र में चलता है, हमें सर्वर के लिए भुगतान करने की आवश्यकता नहीं है, इसलिए हमें आपसे शुल्क लेने की आवश्यकता नहीं है।
क्या मैं एक साथ कई फाइलें परिवर्तित कर सकता हूं?
हाँ! आप एक साथ जितनी चाहें उतनी फाइलें परिवर्तित कर सकते हैं। बस उन्हें जोड़ते समय कई फाइलों का चयन करें।