OCR, atau Optical Character Recognition, adalah teknologi yang digunakan untuk mengubah berbagai jenis dokumen, seperti dokumen kertas yang dipindai, file PDF atau gambar yang diambil oleh kamera digital, menjadi data yang dapat diedit dan dicari.
Pada tahap pertama dari OCR, gambar dari dokumen teks discan. Ini bisa berupa foto atau dokumen yang telah di-scan. Tujuan dari tahap ini adalah untuk membuat salinan digital dari dokumen, bukan membutuhkan transkripsi manual. Selain itu, proses digitalisasi ini juga dapat membantu meningkatkan daya tahan material karena dapat mengurangi penanganan sumber daya yang rapuh.
Setelah dokumen didigitalkan, perangkat lunak OCR memisahkan gambar menjadi karakter individu untuk pengenalan. Ini disebut proses segmentasi. Segmentasi memecah dokumen menjadi baris, kata, dan akhirnya karakter individu. Pembagian ini merupakan proses yang kompleks karena banyak faktor yang terlibat - font yang berbeda, ukuran teks yang berbeda, dan penjajaran teks yang beragam, hanya untuk beberapa saja.
Setelah segmentasi, algoritma OCR kemudian menggunakan pengenalan pola untuk mengidentifikasi setiap karakter individu. Untuk setiap karakter, algoritma membandingkannya dengan basis data bentuk karakter. Kecocokan terdekat kemudian dipilih sebagai identitas karakter. Dalam pengenalan fitur, sebuah bentuk OCR yang lebih canggih, algoritma tidak hanya memeriksa bentuk tetapi juga mengambil garis dan kurva dalam pola.
OCR memiliki banyak aplikasi praktis - dari digitalisasi dokumen cetak, mengaktifkan layanan teks-ke-suara, otomatisasi proses entri data, bahkan membantu pengguna dengan gangguan penglihatan untuk berinteraksi dengan teks secara lebih baik. Namun, perlu dicatat bahwa proses OCR tidak tak tertandingi dan dapat membuat kesalahan terutama ketika berurusan dengan dokumen resolusi rendah, font yang kompleks, atau teks yang dicetak dengan buruk. Oleh karena itu, keakuratan sistem OCR bervariasi sangat bergantung pada kualitas dokumen asli dan spesifik software OCR yang digunakan.
OCR merupakan teknologi penting dalam praktik ekstraksi dan digitalisasi data modern. Ini menghemat waktu dan sumber daya yang signifikan dengan mengurangi kebutuhan untuk entri data manual dan memberikan pendekatan tepercaya, efisien untuk mentransformasikan dokumen fisik menjadi format digital.
Optical Character Recognition (OCR) adalah teknologi yang digunakan untuk mengubah berbagai jenis dokumen, seperti dokumen kertas yang telah dipindai, file PDF, atau gambar yang ditangkap oleh kamera digital, menjadi data yang dapat diedit dan dicari.
OCR bekerja dengan memindai gambar atau dokumen input, membagi gambar menjadi karakter individu, dan membandingkan setiap karakter dengan database bentuk karakter menggunakan pengenalan pola atau pengenalan fitur.
OCR digunakan dalam berbagai sektor dan aplikasi, termasuk mendigitalkan dokumen yang dicetak, mengaktifkan layanan teks-ke-suara, mengotomatisasi proses entri data, dan membantu pengguna dengan gangguan penglihatan untuk berinteraksi lebih baik dengan teks.
Meskipun telah ada kemajuan besar dalam teknologi OCR, tetapi itu tidak sempurna. Akurasi dapat bervariasi tergantung pada kualitas dokumen asli dan spesifik dari software OCR yang digunakan.
Meskipun OCR sebagian besar dirancang untuk teks cetak, beberapa sistem OCR lanjutan juga mampu mengenali tulisan tangan yang jelas dan konsisten. Namun, biasanya pengenalan tulisan tangan kurang akurat karena variasi besar dalam gaya tulisan individu.
Ya, banyak sistem software OCR dapat mengenali beberapa bahasa. Namun, penting untuk memastikan bahwa bahasa spesifik tersebut didukung oleh software yang Anda gunakan.
OCR berarti Optical Character Recognition dan digunakan untuk mengenali teks cetak, sedangkan ICR, atau Intelligent Character Recognition, lebih canggih dan digunakan untuk mengenali teks tulisan tangan.
OCR bekerja terbaik dengan font yang jelas, mudah dibaca dan ukuran teks standar. Meski bisa bekerja dengan berbagai font dan ukuran, akurasi cenderung menurun ketika berhadapan dengan font yang tidak biasa atau ukuran teks sangat kecil.
OCR bisa kesulitan dengan dokumen beresolusi rendah, font yang rumit, teks yang dicetak buruk, tulisan tangan, dan dokumen dengan latar belakang yang mengganggu teks. Juga, meskipun dapat bekerja dengan banyak bahasa, mungkin tidak mencakup setiap bahasa secara sempurna.
Ya, OCR dapat memindai teks berwarna dan latar belakang berwarna, meskipun umumnya lebih efektif dengan kombinasi warna kontras tinggi, seperti teks hitam pada latar belakang putih. Akurasi mungkin berkurang ketika warna teks dan latar belakang tidak memiliki kontras yang cukup.
AVIF (AV1 Image File Format) adalah format file gambar modern yang memanfaatkan codec video AV1 untuk memberikan efisiensi kompresi yang unggul dibandingkan dengan format lama seperti JPEG, PNG, dan WebP. Dikembangkan oleh Alliance for Open Media (AOMedia), AVIF bertujuan untuk memberikan gambar berkualitas tinggi dengan ukuran file yang lebih kecil, menjadikannya pilihan yang menarik bagi pengembang web dan pembuat konten yang ingin mengoptimalkan situs web dan aplikasi mereka.
Inti dari AVIF adalah codec video AV1, yang dirancang sebagai alternatif bebas royalti untuk codec berpemilik seperti H.264 dan HEVC. AV1 menggunakan teknik kompresi canggih, seperti prediksi intra-frame dan inter-frame, pengkodean transformasi, dan pengkodean entropi, untuk mencapai penghematan bitrate yang signifikan sambil mempertahankan kualitas visual. Dengan memanfaatkan kemampuan pengkodean intra-frame AV1, AVIF dapat mengompresi gambar diam lebih efisien daripada format tradisional.
Salah satu fitur utama AVIF adalah dukungannya untuk kompresi lossy dan lossless. Kompresi lossy memungkinkan rasio kompresi yang lebih tinggi dengan mengorbankan beberapa kualitas gambar, sementara kompresi lossless mempertahankan data gambar asli tanpa kehilangan informasi apa pun. Fleksibilitas ini memungkinkan pengembang untuk memilih mode kompresi yang sesuai berdasarkan kebutuhan spesifik mereka, menyeimbangkan ukuran file dan fidelitas gambar.
AVIF juga mendukung berbagai ruang warna dan kedalaman bit, membuatnya cocok untuk berbagai jenis gambar dan kasus penggunaan. Ini dapat menangani ruang warna RGB dan YUV, dengan kedalaman bit mulai dari 8 hingga 12 bit per saluran. Selain itu, AVIF mendukung pencitraan rentang dinamis tinggi (HDR), yang memungkinkan representasi nilai luminansi yang lebih luas dan warna yang lebih hidup. Kemampuan ini sangat bermanfaat untuk tampilan dan konten HDR.
Keuntungan signifikan lainnya dari AVIF adalah kemampuannya untuk mengodekan gambar dengan saluran alfa, yang memungkinkan transparansi. Fitur ini sangat penting untuk grafik dan logo yang memerlukan integrasi yang mulus dengan warna atau pola latar belakang yang berbeda. Dukungan saluran alfa AVIF lebih efisien dibandingkan dengan PNG, karena dapat mengompresi informasi transparansi bersama dengan data gambar.
Untuk membuat gambar AVIF, data gambar sumber pertama-tama dibagi menjadi kotak unit pengkodean, biasanya dengan ukuran 64x64 piksel. Setiap unit pengkodean kemudian dibagi lagi menjadi blok yang lebih kecil, yang diproses secara independen oleh encoder AV1. Encoder menerapkan urutan teknik kompresi, seperti prediksi, pengkodean transformasi, kuantisasi, dan pengkodean entropi, untuk mengurangi ukuran data sambil mempertahankan kualitas gambar.
Selama tahap prediksi, encoder menggunakan prediksi intra-frame untuk memperkirakan nilai piksel dalam sebuah blok berdasarkan piksel di sekitarnya. Proses ini mengeksploitasi redundansi spasial dan membantu mengurangi jumlah data yang perlu dikodekan. Prediksi inter-frame, yang digunakan dalam kompresi video, tidak berlaku untuk gambar diam seperti AVIF.
Setelah prediksi, data residual (perbedaan antara nilai piksel yang diprediksi dan aktual) mengalami pengkodean transformasi. Codec AV1 menggunakan satu set fungsi transformasi kosinus diskrit (DCT) dan transformasi sinus diskrit asimetris (ADST) untuk mengubah data domain spasial menjadi domain frekuensi. Langkah ini membantu memusatkan energi sinyal residual ke dalam koefisien yang lebih sedikit, sehingga lebih mudah dikompresi.
Kuantisasi kemudian diterapkan pada koefisien yang ditransformasikan untuk mengurangi presisi data. Dengan membuang informasi yang kurang signifikan, kuantisasi memungkinkan rasio kompresi yang lebih tinggi dengan mengorbankan beberapa kehilangan kualitas gambar. Parameter kuantisasi dapat disesuaikan untuk mengontrol pertukaran antara ukuran file dan fidelitas gambar.
Terakhir, teknik pengkodean entropi, seperti pengkodean aritmatika atau pengkodean panjang variabel, digunakan untuk mengompresi koefisien terkuantisasi lebih lanjut. Teknik ini memberikan kode yang lebih pendek untuk simbol yang lebih sering muncul, menghasilkan representasi data gambar yang lebih ringkas.
Setelah proses pengkodean selesai, data gambar terkompresi dikemas ke dalam format wadah AVIF, yang mencakup metadata seperti dimensi gambar, ruang warna, dan kedalaman bit. File AVIF yang dihasilkan kemudian dapat disimpan atau dikirim secara efisien, memakan lebih sedikit ruang penyimpanan atau bandwidth dibandingkan dengan format gambar lainnya.
Untuk mendekode gambar AVIF, proses sebaliknya diikuti. Decoder mengekstrak data gambar terkompresi dari wadah AVIF dan menerapkan dekode entropi untuk merekonstruksi koefisien terkuantisasi. Kuantisasi terbalik dan pengkodean transformasi terbalik kemudian dilakukan untuk mendapatkan data residual. Nilai piksel yang diprediksi, yang diturunkan dari prediksi intra-frame, ditambahkan ke data residual untuk merekonstruksi gambar akhir.
Salah satu tantangan dalam mengadopsi AVIF adalah pengenalannya yang relatif baru dan dukungan browser yang terbatas dibandingkan dengan format mapan seperti JPEG dan PNG. Namun, karena semakin banyak browser dan alat pemrosesan gambar yang mulai mendukung AVIF secara native, adopsi diharapkan akan tumbuh, didorong oleh meningkatnya permintaan untuk kompresi gambar yang efisien.
Untuk mengatasi masalah kompatibilitas, situs web dan aplikasi dapat menggunakan mekanisme fallback, menyajikan gambar AVIF ke klien yang kompatibel sambil menyediakan format alternatif seperti JPEG atau WebP untuk browser lama. Pendekatan ini memastikan bahwa pengguna dapat mengakses konten terlepas dari dukungan browser mereka untuk AVIF.
Sebagai kesimpulan, AVIF adalah format file gambar yang menjanjikan yang memanfaatkan kekuatan codec video AV1 untuk memberikan efisiensi kompresi yang unggul. Dengan dukungannya untuk kompresi lossy dan lossless, berbagai ruang warna dan kedalaman bit, pencitraan HDR, dan transparansi saluran alfa, AVIF menawarkan solusi serbaguna untuk mengoptimalkan gambar di web. Karena dukungan browser terus berkembang dan lebih banyak alat yang menggunakan AVIF, AVIF berpotensi menjadi pilihan yang disukai bagi pengembang dan pembuat konten yang ingin mengurangi ukuran file gambar tanpa mengorbankan kualitas visual.
Konverter ini berjalan sepenuhnya di browser Anda. Ketika Anda memilih sebuah file, file tersebut dibaca ke dalam memori dan dikonversi ke format yang dipilih. Anda kemudian dapat mengunduh file yang telah dikonversi.
Konversi dimulai seketika, dan sebagian besar file dikonversi dalam waktu kurang dari satu detik. File yang lebih besar mungkin membutuhkan waktu lebih lama.
File Anda tidak pernah diunggah ke server kami. File tersebut dikonversi di browser Anda, dan file yang telah dikonversi kemudian diunduh. Kami tidak pernah melihat file Anda.
Kami mendukung konversi antara semua format gambar, termasuk JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, dan lainnya.
Konverter ini sepenuhnya gratis, dan akan selalu gratis. Karena berjalan di browser Anda, kami tidak perlu membayar untuk server, jadi kami tidak perlu mengenakan biaya kepada Anda.
Ya! Anda dapat mengkonversi sebanyak mungkin file sekaligus. Cukup pilih beberapa file saat Anda menambahkannya.