OCR di ogni VDA
Trascina e rilascia o clicca per selezionare
Privato e sicuro
Tutto accade nel tuo browser. I tuoi file non toccano mai i nostri server.
Velocissimo
Nessun caricamento, nessuna attesa. Converti nel momento in cui rilasci un file.
Realmente gratuito
Nessun account richiesto. Nessun costo nascosto. Nessun trucco sulle dimensioni dei file.
Il Riconoscimento Ottico dei Caratteri (OCR) trasforma le immagini di testo—scansioni, foto da smartphone, PDF—in stringhe leggibili dalla macchina e, sempre più, in dati strutturati. L'OCR moderno è una pipeline che pulisce un'immagine, trova il testo, lo legge ed esporta metadati ricchi in modo che i sistemi a valle possano cercare, indicizzare o estrarre campi. Due standard di output ampiamente utilizzati sono hOCR, un microformato HTML per testo e layout, e ALTO XML, uno schema orientato a biblioteche/archivi; entrambi conservano posizioni, ordine di lettura e altri spunti di layout e sono supportati da motori popolari come Tesseract.
Un rapido tour della pipeline
Pre-elaborazione. La qualità dell'OCR inizia con la pulizia dell'immagine: conversione in scala di grigi, denoising, sogliatura (binarizzazione) e raddrizzamento. I tutorial canonici di OpenCV coprono la sogliatura globale, adattiva e di Otsu —punti fermi per documenti con illuminazione non uniforme o istogrammi bimodali. Quando l'illuminazione varia all'interno di una pagina (pensa agli scatti del telefono), i metodi adattivi spesso superano una singola soglia globale; Otsu sceglie automaticamente una soglia analizzando l'istogramma. La correzione dell'inclinazione è altrettanto importante: il raddrizzamento basato su Hough (Trasformata di Hough) abbinato alla binarizzazione di Otsu è una ricetta comune ed efficace nelle pipeline di pre-elaborazione di produzione.
Rilevamento vs. riconoscimento. L'OCR è tipicamente suddiviso in rilevamento del testo (dov'è il testo?) e riconoscimento del testo (cosa dice?). Nelle scene naturali e in molte scansioni, i rilevatori completamente convoluzionali come EAST prevedono in modo efficiente quadrilateri a livello di parola o riga senza pesanti fasi di proposta e sono implementati in toolkit comuni (ad es. tutorial sul rilevamento del testo di OpenCV). Su pagine complesse (giornali, moduli, libri), la segmentazione di righe/regioni e l'inferenza dell'ordine di lettura sono importanti:Kraken implementa la segmentazione tradizionale di zone/righe e la segmentazione neurale della linea di base, con supporto esplicito per diversi script e direzioni (LTR/RTL/verticale).
Modelli di riconoscimento. Il classico cavallo di battaglia open-source Tesseract (reso open-source da Google, con radici in HP) si è evoluto da un classificatore di caratteri in un riconoscitore di sequenze basato su LSTM e può emettere PDF ricercabili, output compatibili con hOCR/ALTOe altro dalla CLI. I riconoscitori moderni si basano sulla modellazione di sequenze senza caratteri pre-segmentati. Connectionist Temporal Classification (CTC) rimane fondamentale, imparando gli allineamenti tra le sequenze di feature di input e le stringhe di etichette di output; è ampiamente utilizzato nelle pipeline di scrittura a mano e di testo di scena.
Negli ultimi anni, i Transformer hanno rimodellato l'OCR. TrOCR utilizza un encoder Vision Transformer più un decoder Text Transformer, addestrato su grandi corpora sintetici e poi messo a punto su dati reali, con ottime prestazioni su benchmark di testo stampato, scritto a mano e di scena (vedi anche documentazione di Hugging Face). In parallelo, alcuni sistemi eludono l'OCR per la comprensione a valle: Donut (Document Understanding Transformer) è un encoder-decoder senza OCR che produce direttamente risposte strutturate (come JSON chiave-valore) da immagini di documenti (repo, scheda del modello), evitando l'accumulo di errori quando un passaggio OCR separato alimenta un sistema IE.
Motori e librerie
Se si desidera una lettura del testo "batterie incluse" su molti script, EasyOCR offre una semplice API con oltre 80 modelli linguistici, restituendo riquadri, testo e confidenze, utile per prototipi e script non latini. Per i documenti storici, Kraken brilla con la segmentazione della linea di base e l'ordine di lettura consapevole dello script; per un addestramento flessibile a livello di riga, Calamari si basa sulla discendenza di Ocropy (Ocropy) con riconoscitori (multi-)LSTM+CTC e una CLI for la messa a punto di modelli personalizzati.
Set di dati e benchmark
La generalizzazione dipende dai dati. Per la scrittura a mano, il Database di scrittura a mano IAM fornisce frasi in inglese diverse per scrittore per l'addestramento e la valutazione; è un set di riferimento di lunga data per il riconoscimento di righe e parole. Per il testo di scena, COCO-Text ha stratificato annotazioni estese su MS-COCO, con etichette per stampato/scritto a mano, leggibile/illeggibile, script e trascrizioni complete (vedi anche la pagina del progetto originale). Il campo si basa anche pesantemente sul pre-addestramento sintetico: SynthText in the Wild renderizza il testo in fotografie con geometria e illuminazione realistiche, fornendo enormi volumi di dati per pre-addestrare rilevatori e riconoscitori (riferimento codice e dati).
Le competizioni sotto l'ombrello Robust Reading di ICDAR mantengono la valutazione fondata. I compiti recenti enfatizzano il rilevamento/lettura end-to-end e includono il collegamento di parole in frasi, con il codice ufficiale che riporta precisione/richiamo/F-score, intersection-over-union (IoU) e metriche di distanza di modifica a livello di carattere, rispecchiando ciò che i professionisti dovrebbero monitorare.
Formati di output e uso a valle
L'OCR raramente termina con testo semplice. Archivi e biblioteche digitali preferiscono ALTO XML perché codifica il layout fisico (blocchi/righe/parole con coordinate) insieme al contenuto, e si abbina bene con il packaging METS. Il hOCR microformato, al contrario, incorpora la stessa idea in HTML/CSS usando classi come ocr_line e ocrx_word, rendendo facile visualizzare, modificare e trasformare con strumenti web. Tesseract espone entrambi, ad es. generando hOCR o PDF ricercabili direttamente dalla CLI (guida all'output PDF); wrapper Python come pytesseract aggiungono convenienza. Esistono convertitori per tradurre tra hOCR e ALTO quando i repository hanno standard di ingestione fissi —vedi questo elenco curato di strumenti per formati di file OCR.
Guida pratica
- Inizia con i dati e la pulizia. Se le tue immagini sono foto di telefono o scansioni di qualità mista, investi nella sogliatura (adattiva e Otsu) e nel raddrizzamento (Hough) prima di qualsiasi messa a punto del modello. Spesso otterrai di più da una robusta ricetta di pre-elaborazione che dalla sostituzione dei riconoscitori.
- Scegli il rilevatore giusto. Per le pagine scansionate con colonne regolari, un segmentatore di pagine (zone → righe) può essere sufficiente; per le immagini naturali, i rilevatori a scatto singolo come EAST sono baseline forti e si collegano a molti toolkit (esempio OpenCV).
- Scegli un riconoscitore che corrisponda al tuo testo. Per il latino stampato, Tesseract (LSTM/OEM) è robusto e veloce; per multi-script o prototipi veloci, EasyOCR è produttivo; per la scrittura a mano o i caratteri tipografici storici, considera Kraken o Calamari e pianifica la messa a punto. Se hai bisogno di un accoppiamento stretto con la comprensione dei documenti (estrazione chiave-valore, VQA), valuta TrOCR (OCR) rispetto a Donut (senza OCR) sul tuo schema—Donut potrebbe rimuovere un intero passaggio di integrazione.
- Misura ciò che conta. Per i sistemi end-to-end, riporta il rilevamento F-score e il riconoscimento CER/WER (entrambi basati sulla distanza di modifica di Levenshtein ; vedi CTC); per compiti pesanti dal punto di vista del layout, traccia IoU/aderenza e la distanza di modifica normalizzata a livello di carattere come nei kit di valutazione ICDAR RRC .
- Esporta output ricchi. Preferisci hOCR /ALTO (o entrambi) in modo da conservare le coordinate e l'ordine di lettura—fondamentale per l'evidenziazione dei risultati di ricerca, l'estrazione di tabelle/campi e la provenienza. La CLI di Tesseract e pytesseract lo rendono un gioco da ragazzi.
Guardando al futuro
La tendenza più forte è la convergenza: rilevamento, riconoscimento, modellazione del linguaggio e persino la decodifica specifica del compito si stanno fondendo in stack Transformer unificati. Il pre-addestramento su grandi corpora sintetici rimane un moltiplicatore di forza. I modelli senza OCR competeranno aggressivamente ovunque l'obiettivo siano output strutturati piuttosto che trascrizioni letterali. Aspettatevi anche implementazioni ibride: un rilevatore leggero più un riconoscitore in stile TrOCR per testo lungo, e un modello in stile Donut per moduli e ricevute.
Ulteriori letture e strumenti
Tesseract (GitHub) · Documentazione di Tesseract · Specifiche hOCR · Sfondo ALTO · Rilevatore EAST · Rilevamento del testo OpenCV · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · Scrittura a mano IAM · Strumenti per formati di file OCR · EasyOCR
Domande frequenti
Cos'è l'OCR?
L'Optical Character Recognition (OCR) è una tecnologia utilizzata per convertire vari tipi di documenti, come documenti cartacei scansionati, file PDF o immagini catturate da una fotocamera digitale, in dati modificabili e ricercabili.
Come funziona l'OCR?
L'OCR funziona analizzando l'immagine o il documento in ingresso, segmentando l'immagine in singoli caratteri, e confrontando ciascun carattere con un database di forme carattere utilizzando il riconoscimento di pattern o il riconoscimento delle caratteristiche.
Quali sono le applicazioni pratiche dell'OCR?
L'OCR viene utilizzato in vari settori e applicazioni, tra cui la digitalizzazione di documenti stampati, l'attivazione di servizi di testo in voce, l'automazione dei processi di inserimento dati, e l'aiuto agli utenti con problemi di vista a interagire in modo più efficace con il testo.
L'OCR è sempre preciso al 100%?
Nonostante ci siano stati notevoli progressi nella tecnologia OCR, non è infallibile. L'accuratezza può variare a seconda della qualità del documento originale e delle specifiche del software OCR utilizzato.
L'OCR può riconoscere la scrittura a mano?
Sebbene l'OCR sia principalmente progettato per il testo stampato, alcuni sistemi OCR avanzati sono anche in grado di riconoscere la scrittura a mano chiara e coerente. Tuttavia, il riconoscimento della scrittura a mano è generalmente meno preciso a causa della grande varietà di stili di scrittura individuali.
L'OCR può gestire più lingue?
Sì, molti sistemi software OCR possono riconoscere più lingue. Tuttavia, è importante assicurarsi che la lingua specifica sia supportata dal software che si utilizza.
Qual è la differenza tra OCR e ICR?
L'OCR sta per Optical Character Recognition ed è usato per riconoscere il testo stampato, mentre l'ICR, o Intelligent Character Recognition, è più avanzato ed è usato per riconoscere il testo scritto a mano.
L'OCR può lavorare con qualsiasi font e dimensione del testo?
L'OCR funziona meglio con font chiari, facilmente leggibili e dimensioni standard del testo. Anche se può lavorare con vari font e dimensioni, l'accuratezza tende a diminuire quando si tratta di font insoliti o dimensioni del testo molto piccole.
Quali sono le limitazioni della tecnologia OCR?
L'OCR può avere difficoltà con documenti a bassa risoluzione, font complessi, testi stampati male, scrittura a mano, e documenti con sfondi che interferiscono con il testo. Inoltre, anche se può lavorare con molte lingue, potrebbe non coprire ogni lingua perfettamente.
L'OCR può eseguire la scansione di testi colorati o sfondi colorati?
Sì, l'OCR può eseguire la scansione di testi colorati e sfondi colorati, sebbene generalmente sia più efficace con combinazioni di colori ad alto contrasto, come il testo nero su sfondo bianco. L'accuratezza può diminuire quando il colore del testo e dello sfondo non ha un contrasto sufficiente.
Qual è il formato VDA?
Immagine Truevision Targa
Il formato di immagine VDA, sebbene non sia comunemente riconosciuto come formati quali JPEG, PNG o GIF, svolge un ruolo significativo in settori e applicazioni specifici. È progettato per soddisfare esigenze particolari che i formati di immagine tradizionali potrebbero non affrontare in modo efficace. Il formato VDA, che sta per Verband der Automobilindustrie (Associazione dell'industria automobilistica), è stato inizialmente sviluppato per soddisfare le rigorose richieste dell'industria automobilistica. Questo formato è particolarmente adatto alla gestione della grafica dettagliata e precisa richiesta nella progettazione e produzione di automobili, inclusi schemi intricati e disegni CAD (Computer-Aided Design).
Una delle caratteristiche distintive del formato di immagine VDA è la sua attenzione alla precisione e alla chiarezza. Nella progettazione e nell'ingegneria automobilistica, anche il più piccolo dettaglio può essere di importanza critica. Il formato VDA supporta immagini ad alta risoluzione con un'enfasi sulla conservazione dell'esattezza di linee e forme, il che è cruciale per disegni CAD e schemi tecnici. A differenza dei formati che danno priorità alla compressione per risparmiare spazio, VDA mantiene l'integrità dell'immagine originale, assicurando che i dettagli richiesti per una produzione e un assemblaggio accurati siano preservati.
In termini di specifiche tecniche, i file VDA sono basati su vettori. Ciò significa che utilizzano equazioni matematiche per rappresentare le immagini, al contrario dell'approccio basato sui pixel utilizzato da formati come JPEG o PNG. Questo approccio vettoriale consente una scalabilità infinita senza perdita di risoluzione o chiarezza. I progettisti possono ingrandire le parti più piccole di un disegno senza incontrare la pixelatura, una caratteristica preziosa nel mondo preciso della progettazione automobilistica. Questa capacità di mantenere la chiarezza a qualsiasi scala è uno dei principali vantaggi del formato VDA.
Il formato VDA incorpora anche un sistema a livelli che ne migliora l'utilità in complesse attività di progettazione e ingegneria. Ogni livello può contenere diversi elementi del design, come sistemi elettrici, dettagli del telaio o il layout della trasmissione. Questa organizzazione consente a progettisti e ingegneri di isolare aspetti specifici del design per un esame dettagliato o una modifica senza influenzare altre parti dell'immagine. La possibilità di lavorare con immagini a livelli semplifica notevolmente i processi di progettazione e revisione, rendendo il formato VDA altamente efficiente per le complesse attività per cui è destinato.
Un altro aspetto in cui brilla il formato di immagine VDA è il suo supporto ai metadati. Ogni file VDA può contenere informazioni dettagliate oltre alla rappresentazione visiva, come proprietà dei materiali, istruzioni di produzione e altri dati rilevanti per la progettazione e il processo di produzione automobilistica. Questa capacità consente un approccio più integrato alla progettazione automobilistica, in cui il file immagine stesso funge da pacchetto completo di dati visivi e specifiche tecniche correlate. L'inclusione di metadati rende i file VDA più che semplici immagini; diventano una parte cruciale del flusso di lavoro nella progettazione e produzione automobilistica.
La compatibilità e l'interoperabilità con altri strumenti software sono cruciali nell'ecosistema digitale odierno e il formato VDA è progettato tenendo presente questo aspetto. È supportato da una vasta gamma di applicazioni CAD e di disegno tecnico, garantendo che i file possano essere facilmente condivisi e modificati su diverse piattaforme e da diversi stakeholder nel processo di progettazione automobilistica. L'ampio supporto per i file VDA all'interno del software standard del settore facilita anche la collaborazione, poiché i file possono essere scambiati senza la necessità di conversione, mantenendo così la fedeltà al design e alle specifiche originali.
Nonostante il suo caso d'uso specializzato, l'adozione del formato VDA pone alcune sfide. Uno dei principali ostacoli è la curva di apprendimento associata alla comprensione e all'utilizzo efficace di tutte le funzionalità e capacità del formato. Inoltre, poiché è specializzato, i nuovi utenti o coloro che sono abituati a formati di immagine più generali potrebbero trovare un po' scoraggiante il passaggio all'utilizzo dei file VDA. Inoltre, mentre il formato è ben supportato all'interno dell'industria automobilistica, potrebbe non essere altrettanto facilmente accessibile o integrato in software di progettazione grafica generici, il che potrebbe limitarne l'uso a un pubblico più ristretto.
L'efficienza migliorata e il controllo di qualità facilitati dal formato VDA hanno implicazioni significative per la catena di fornitura dell'industria automobilistica. Fornendo una rappresentazione visiva chiara e dettagliata delle parti, insieme ai dati di produzione pertinenti, il formato VDA aiuta a ridurre gli errori e le comunicazioni errate. Questo miglioramento della precisione si traduce direttamente in risparmi sui costi e in una maggiore qualità nei prodotti finali. La capacità di comunicare con precisione le intenzioni di progettazione e i requisiti di produzione può portare a operazioni più razionali, dalla progettazione iniziale all'assemblaggio finale.
Il futuro del formato di immagine VDA sembra promettente, soprattutto perché l'industria automobilistica continua ad avanzare in termini di tecnologia e complessità. È probabile che aumenti la necessità di formati di immagine precisi, scalabili e ricchi di dati, rendendo VDA una parte ancora più critica del processo di progettazione e produzione automobilistica. Man mano che i veicoli elettrici e i sistemi avanzati di assistenza alla guida (ADAS) diventano più diffusi, la complessità della progettazione automobilistica aumenterà, consolidando ulteriormente il ruolo di formati di immagine completi e dettagliati come VDA nel settore.
Anche le considerazioni ambientali stanno diventando sempre più importanti nell'industria automobilistica. La capacità del formato VDA di integrare dati dettagliati di produzione e materiali insieme a elementi di progettazione visiva può svolgere un ruolo cruciale nelle pratiche di produzione sostenibili. Consentendo a progettisti e produttori di incorporare dati ambientali direttamente nei file di progettazione, il formato VDA facilita la creazione di veicoli più ecologici. Questa caratteristica supporta il passaggio del settore verso la sostenibilità rendendo più semplice valutare e ottimizzare i materiali e i processi di produzione per un impatto ambientale minimo.
L'enfasi del formato VDA sulla precisione, la scalabilità e l'integrazione completa dei dati lo posiziona in modo unico tra i formati di immagine. Sebbene possa non essere riconosciuto universalmente come alcuni altri formati, le sue capacità specializzate lo rendono indispensabile per le attività per cui è stato progettato. Man mano che settori come la progettazione automobilistica continuano a evolversi, è probabile che cresca l'importanza di formati come VDA in grado di supportare immagini complesse, dettagliate e ricche di dati. Sebbene affronti sfide in termini di adozione diffusa e facilità d'uso, i suoi vantaggi nella sua area di applicazione di nicchia sono innegabili. Comprendere e sfruttare questi vantaggi può portare a progressi significativi nell'efficienza e nella qualità della progettazione e della produzione automobilistica.
In conclusione, il formato di immagine VDA, con il suo approccio basato su vettori, il sistema a livelli, il supporto dei metadati e la compatibilità con le applicazioni CAD e di disegno tecnico, offre uno strumento robusto per l'industria automobilistica. Il suo design è specificamente progettato per soddisfare gli elevati requisiti di precisione e dettaglio della progettazione e produzione automobilistica, facilitando un grado di chiarezza ed efficienza difficile da ottenere con altri formati. Man mano che il settore continua a innovare e ad andare verso pratiche più sostenibili, il ruolo del formato VDA nel supportare questi progressi diventa sempre più importante. Le sfide che deve affrontare, principalmente legate alla sua natura specializzata e alla curva di apprendimento, sono superate dai significativi vantaggi che offre in termini di precisione di progettazione, integrazione dei dati ed efficienza operativa. Il formato di immagine VDA rappresenta un elemento tecnologico critico nell'evoluzione in corso della progettazione e della produzione automobilistica, sottolineando l'importanza di soluzioni specifiche del settore nell'affrontare sfide complesse.
Formati supportati
AAI.aai
Immagine AAI Dune
AI.ai
Adobe Illustrator CS2
AVIF.avif
Formato di file immagine AV1
BAYER.bayer
Immagine Bayer grezza
BMP.bmp
Immagine bitmap di Microsoft Windows
CIN.cin
File immagine Cineon
CLIP.clip
Maschera di ritaglio immagine
CMYK.cmyk
Campioni grezzi ciano, magenta, giallo e nero
CUR.cur
Icona Microsoft
DCX.dcx
ZSoft IBM PC multi-pagina Paintbrush
DDS.dds
Superficie DirectDraw Microsoft
DPX.dpx
Immagine SMTPE 268M-2003 (DPX 2.0)
DXT1.dxt1
Superficie DirectDraw Microsoft
EPDF.epdf
Formato Documento Portatile Incapsulato
EPI.epi
Formato di interscambio PostScript incapsulato Adobe
EPS.eps
PostScript incapsulato Adobe
EPSF.epsf
PostScript incapsulato Adobe
EPSI.epsi
Formato di interscambio PostScript incapsulato Adobe
EPT.ept
PostScript incapsulato con anteprima TIFF
EPT2.ept2
PostScript incapsulato Livello II con anteprima TIFF
EXR.exr
Immagine ad alto range dinamico (HDR)
FF.ff
Farbfeld
FITS.fits
Sistema di Trasporto Immagini Flessibile
GIF.gif
Formato di interscambio grafico CompuServe
HDR.hdr
Immagine ad Alto Range Dinamico
HEIC.heic
Contenitore immagini ad alta efficienza
HRZ.hrz
Slow Scan TeleVision
ICO.ico
Icona Microsoft
ICON.icon
Icona Microsoft
J2C.j2c
Flusso di codici JPEG-2000
J2K.j2k
Flusso di codici JPEG-2000
JNG.jng
Grafica di Rete JPEG
JP2.jp2
Sintassi del Formato File JPEG-2000
JPE.jpe
Formato JFIF del Gruppo di Esperti Fotografici Coniugati
JPEG.jpeg
Formato JFIF del Gruppo di Esperti Fotografici Coniugati
JPG.jpg
Formato JFIF del Gruppo di Esperti Fotografici Coniugati
JPM.jpm
Sintassi del Formato File JPEG-2000
JPS.jps
Formato JPS del Gruppo di Esperti Fotografici Coniugati
JPT.jpt
Sintassi del Formato File JPEG-2000
JXL.jxl
Immagine JPEG XL
MAP.map
Database di Immagini Senza Soluzione di Continuità a Multi-risoluzione (MrSID)
MAT.mat
Formato immagine MATLAB livello 5
PAL.pal
Pixmap Palm
PALM.palm
Pixmap Palm
PAM.pam
Formato bitmap bidimensionale comune
PBM.pbm
Formato bitmap portatile (bianco e nero)
PCD.pcd
Foto CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
Formato ImageViewer del database Palm
PDF.pdf
Formato Documento Portatile
PDFA.pdfa
Formato di Archivio Documento Portatile
PFM.pfm
Formato float portatile
PGM.pgm
Formato graymap portatile (scala di grigi)
PGX.pgx
Formato non compresso JPEG 2000
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
Formato JFIF del Gruppo di Esperti Fotografici Condivisi
PNG.png
Grafica Rete Portatile
PNG00.png00
PNG eredita la profondità di bit, il tipo di colore dall'immagine originale
PNG24.png24
RGB a 24 bit opaco o trasparente binario (zlib 1.2.11)
PNG32.png32
RGBA a 32 bit opaco o trasparente binario
PNG48.png48
RGB a 48 bit opaco o trasparente binario
PNG64.png64
RGBA a 64 bit opaco o trasparente binario
PNG8.png8
Indicizzato a 8 bit opaco o trasparente binario
PNM.pnm
Anymap portatile
PPM.ppm
Formato pixmap portatile (colore)
PS.ps
File Adobe PostScript
PSB.psb
Formato Grande Documento Adobe
PSD.psd
Bitmap Adobe Photoshop
RGB.rgb
Campioni grezzi di rosso, verde e blu
RGBA.rgba
Campioni grezzi di rosso, verde, blu e alfa
RGBO.rgbo
Campioni grezzi di rosso, verde, blu e opacità
SIX.six
Formato grafico DEC SIXEL
SUN.sun
Rasterfile Sun
SVG.svg
Grafica Vettoriale Scalabile
TIFF.tiff
Formato File Immagine Etichettato
VDA.vda
Immagine Truevision Targa
VIPS.vips
Immagine VIPS
WBMP.wbmp
Immagine Bitmap Wireless (livello 0)
WEBP.webp
Formato Immagine WebP
YUV.yuv
CCIR 601 4:1:1 o 4:2:2
Domande frequenti
Come funziona?
Questo convertitore funziona interamente nel tuo browser. Quando selezioni un file, viene letto in memoria e convertito nel formato selezionato. Puoi quindi scaricare il file convertito.
Quanto tempo ci vuole per convertire un file?
Le conversioni iniziano istantaneamente e la maggior parte dei file viene convertita in meno di un secondo. I file più grandi potrebbero richiedere più tempo.
Cosa succede ai miei file?
I tuoi file non vengono mai caricati sui nostri server. Vengono convertiti nel tuo browser e il file convertito viene quindi scaricato. Non vediamo mai i tuoi file.
Quali tipi di file posso convertire?
Supportiamo la conversione tra tutti i formati di immagine, inclusi JPEG, PNG, GIF, WebP, SVG, BMP, TIFF e altro ancora.
Quanto costa?
Questo convertitore è completamente gratuito e lo sarà sempre. Poiché funziona nel tuo browser, non dobbiamo pagare per i server, quindi non dobbiamo addebitarti alcun costo.
Posso convertire più file contemporaneamente?
Sì! Puoi convertire tutti i file che vuoi in una volta. Basta selezionare più file quando li aggiungi.