OCR any DDS
Drag and drop or click to select.
Private and secure
Everything happens in your browser. Your files never touch our servers.
Blazing fast
No uploading, no waiting. Convert the moment you drop a file.
Actually free
No account required. No hidden costs. No file size tricks.
Optical Character Recognition (OCR) turns images of text—scans, smartphone photos, PDFs—into machine-readable strings and, increasingly, structured data. Modern OCR is a pipeline that cleans an image, finds text, reads it, and exports rich metadata so downstream systems can search, index, or extract fields. Two widely used output standards are hOCR, an HTML microformat for text and layout, and ALTO XML, a library/archives-oriented schema; both preserve positions, reading order, and other layout cues and are supported by popular engines like Tesseract.
A quick tour of the pipeline
Preprocessing. OCR quality starts with image cleanup: grayscale conversion, denoising, thresholding (binarization), and deskewing. Canonical OpenCV tutorials cover global, adaptive and Otsu thresholding—staples for documents with nonuniform lighting or bimodal histograms. When illumination varies within a page (think phone snaps), adaptive methods often outperform a single global threshold; Otsu automatically picks a threshold by analyzing the histogram. Tilt correction is equally important: Hough-based deskewing (Hough Line Transform) paired with Otsu binarization is a common and effective recipe in production preprocessing pipelines.
Detection vs. recognition. OCR is typically split into text detection (where is the text?) and text recognition (what does it say?). In natural scenes and many scans, fully convolutional detectors like EAST efficiently predict word- or line-level quadrilaterals without heavy proposal stages and are implemented in common toolkits (e.g., OpenCV’s text detection tutorial). On complex pages (newspapers, forms, books), segmentation of lines/regions and reading order inference matter:Kraken implements traditional zone/line segmentation and neural baseline segmentation, with explicit support for different scripts and directions (LTR/RTL/vertical).
Recognition models. The classic open-source workhorse Tesseract (open-sourced by Google, with roots at HP) evolved from a character classifier into an LSTM-based sequence recognizer and can emit searchable PDFs, hOCR/ALTO-friendly outputs, and more from the CLI. Modern recognizers rely on sequence modeling without pre-segmented characters. Connectionist Temporal Classification (CTC) remains foundational, learning alignments between input feature sequences and output label strings; it’s widely used in handwriting and scene-text pipelines.
In the last few years, Transformers reshaped OCR. TrOCR uses a vision Transformer encoder plus a text Transformer decoder, trained on large synthetic corpora then fine-tuned on real data, with strong performance across printed, handwritten and scene-text benchmarks (see also Hugging Face docs). In parallel, some systems sidestep OCR for downstream understanding: Donut (Document Understanding Transformer) is an OCR-free encoder-decoder that directly outputs structured answers (like key-value JSON) from document images (repo, model card), avoiding error accumulation when a separate OCR step feeds an IE system.
Engines and libraries
If you want batteries-included text reading across many scripts, EasyOCR offers a simple API with 80+ language models, returning boxes, text, and confidences—handy for prototypes and non-Latin scripts. For historical documents, Kraken shines with baseline segmentation and script-aware reading order; for flexible line-level training, Calamari builds on the Ocropy lineage (Ocropy) with (multi-)LSTM+CTC recognizers and a CLI for fine-tuning custom models.
Datasets and benchmarks
Generalization hinges on data. For handwriting, the IAM Handwriting Database provides writer-diverse English sentences for training and evaluation; it’s a long-standing reference set for line and word recognition. For scene text, COCO-Text layered extensive annotations over MS-COCO, with labels for printed/handwritten, legible/illegible, script, and full transcriptions (see also the original project page). The field also relies heavily on synthetic pretraining: SynthText in the Wild renders text into photographs with realistic geometry and lighting, providing huge volumes of data to pretrain detectors and recognizers (reference code & data).
Competitions under ICDAR’s Robust Reading umbrella keep evaluation grounded. Recent tasks emphasize end-to-end detection/reading and include linking words into phrases, with official code reporting precision/recall/F-score, intersection-over-union (IoU), and character-level edit-distance metrics—mirroring what practitioners should track.
Output formats and downstream use
OCR rarely ends at plain text. Archives and digital libraries prefer ALTO XML because it encodes the physical layout (blocks/lines/words with coordinates) alongside content, and it pairs well with METS packaging. The hOCR microformat, by contrast, embeds the same idea into HTML/CSS using classes like ocr_line and ocrx_word, making it easy to display, edit, and transform with web tooling. Tesseract exposes both—e.g., generating hOCR or searchable PDFs directly from the CLI (PDF output guide); Python wrappers like pytesseract add convenience. Converters exist to translate between hOCR and ALTO when repositories have fixed ingestion standards—see this curated list of OCR file-format tools.
Practical guidance
- Start with data & cleanliness. If your images are phone photos or mixed-quality scans, invest in thresholding (adaptive & Otsu) and deskew (Hough) before any model tuning. You’ll often gain more from a robust preprocessing recipe than from swapping recognizers.
- Choose the right detector. For scanned pages with regular columns, a page segmenter (zones → lines) may suffice; for natural images, single-shot detectors like EAST are strong baselines and plug into many toolkits (OpenCV example).
- Pick a recognizer that matches your text. For printed Latin, Tesseract (LSTM/OEM) is sturdy and fast; for multi-script or quick prototypes, EasyOCR is productive; for handwriting or historical typefaces, consider Kraken or Calamari and plan to fine-tune. If you need tight coupling to document understanding (key-value extraction, VQA), evaluate TrOCR (OCR) versus Donut (OCR-free) on your schema—Donut may remove a whole integration step.
- Measure what matters. For end-to-end systems, report detection F-score and recognition CER/WER (both based on Levenshtein edit distance; see CTC); for layout-heavy tasks, track IoU/tightness and character-level normalized edit distance as in ICDAR RRC evaluation kits.
- Export rich outputs. Prefer hOCR /ALTO (or both) so you keep coordinates and reading order—vital for search hit highlighting, table/field extraction, and provenance. Tesseract’s CLI and pytesseract make this a one-liner.
Looking ahead
The strongest trend is convergence: detection, recognition, language modeling, and even task-specific decoding are merging into unified Transformer stacks. Pretraining on large synthetic corpora remains a force multiplier. OCR-free models will compete aggressively wherever the target is structured outputs rather than verbatim transcripts. Expect hybrid deployments too: a lightweight detector plus a TrOCR-style recognizer for long-form text, and a Donut-style model for forms and receipts.
Further reading & tools
Tesseract (GitHub) · Tesseract docs · hOCR spec · ALTO background · EAST detector · OpenCV text detection · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · IAM handwriting · OCR file-format tools · EasyOCR
Frequently Asked Questions
What is OCR?
Optical Character Recognition (OCR) is a technology used to convert different types of documents, such as scanned paper documents, PDF files or images captured by a digital camera, into editable and searchable data.
How does OCR work?
OCR works by scanning an input image or document, segmenting the image into individual characters, and comparing each character with a database of character shapes using pattern recognition or feature recognition.
What are some practical applications of OCR?
OCR is used in a variety of sectors and applications, including digitizing printed documents, enabling text-to-speech services, automating data entry processes, and assisting visually impaired users to better interact with text.
Is OCR always 100% accurate?
While great advancements have been made in OCR technology, it isn't infallible. Accuracy can vary depending upon the quality of the original document and the specifics of the OCR software being used.
Can OCR recognize handwriting?
Although OCR is primarily designed for printed text, some advanced OCR systems are also able to recognize clear, consistent handwriting. However, typically handwriting recognition is less accurate because of the wide variation in individual writing styles.
Can OCR handle multiple languages?
Yes, many OCR software systems can recognize multiple languages. However, it's important to ensure that the specific language is supported by the software you're using.
What's the difference between OCR and ICR?
OCR stands for Optical Character Recognition and is used for recognizing printed text, while ICR, or Intelligent Character Recognition, is more advanced and is used for recognizing hand-written text.
Does OCR work with any font and text size?
OCR works best with clear, easy-to-read fonts and standard text sizes. While it can work with various fonts and sizes, accuracy tends to decrease when dealing with unusual fonts or very small text sizes.
What are the limitations of OCR technology?
OCR can struggle with low-resolution documents, complex fonts, poorly printed texts, handwriting, and documents with backgrounds that interfere with the text. Also, while it can work with many languages, it may not cover every language perfectly.
Can OCR scan colored text or colored backgrounds?
Yes, OCR can scan colored text and backgrounds, although it's generally more effective with high-contrast color combinations, such as black text on a white background. The accuracy might decrease when text and background colors lack sufficient contrast.
What is the DDS format?
Microsoft DirectDraw Surface
The DirectDraw Surface (DDS) format is a raster image file format, primarily used for storing textures and cubemaps in video games and other 3D applications. Developed by Microsoft, the DDS format is optimized for hardware acceleration, enabling the direct use of texture data on graphics processing units (GPUs). This optimization significantly reduces the loading time of images in real-time rendering applications by allowing the GPU to directly access the compressed texture data, thus bypassing the need for additional processing or decompression by the CPU.
One of the key features of the DDS format is its support for DirectX Texture Compression (DXT), a lossy texture compression algorithm that reduces file size and the bandwidth required for texture transfer without significantly degrading image quality. DXT compression is available in several variations, namely DXT1, DXT3, and DXT5, each offering a different balance between compression ratio and quality. DXT1 is designed for textures with no alpha channel or simple binary alpha, DXT3 is used for textures with explicit alpha, and DXT5 for textures with interpolated alpha transparency.
Another significant advantage of the DDS format is its support for mipmapping. Mipmaps are pre-calculated, optimized versions of a texture, each at progressively lower resolutions. These smaller textures are used when an object is far away from the camera, improving performance and reducing aliasing artifacts. By storing an entire mipmap chain within a single DDS file, game engines can quickly select the most appropriate level of detail for texturing objects based on their distance from the viewer, further boosting rendering efficiency.
The DDS format also supports cubic environment mapping with the use of cubemaps. A cubemap is composed of six square textures that represent the reflections on an environment viewed from a single point, simulating reflections in a 3D world. Having these cubemaps stored directly in the DDS format allows for efficient environment reflections in real-time applications, enhancing the immersive quality of 3D graphics.
In addition to compression and efficiency features, the DDS format can store textures with high dynamic range (HDR). HDR textures offer a wider range of brightness and color, providing more realistic lighting effects in 3D rendering. This capability is essential for modern game engines and graphics software aiming to achieve photorealistic visual quality. The support for HDR in DDS files contributes to its widespread use in high-end graphics applications.
The DDS file format structure includes a header and optional additional headers that contain metadata about the texture data, such as height, width, the format of the pixel data, and flags indicating the presence of mipmaps or cubemaps. This structured approach to metadata allows applications to accurately interpret and utilize the texture data within a DDS file without needing to process or interrogate the data extensively.
Despite its numerous advantages, the DDS format has limitations and challenges. For instance, while DXT compression significantly reduces file size, it can introduce artifacts, especially in textures with high levels of detail or complex alpha transitions. The choice of compression level (DXT1, DXT3, DXT5) impacts the visual fidelity of the texture, making it crucial for texture artists and developers to choose the appropriate compression setting based on the specific needs of their project.
Another challenge related to the DDS format is its limited support outside of game development and 3D applications. While widely supported and used within the video game industry and by graphics APIs like DirectX, DDS files are not universally supported by image editing software. This limitation necessitates the conversion of DDS files to more universally supported formats for editing or viewing outside of specialized software, potentially complicating the workflow for graphics artists.
However, advancements in graphics development tools and libraries have alleviated some of these challenges. Many modern image editing software packages have introduced plugins or built-in support for the DDS format, allowing for direct editing of DDS files without conversion. Furthermore, open-source libraries and toolkits have made it easier for developers to integrate DDS support into their applications, expanding the accessibility and usability of the DDS format beyond its traditional video game and 3D application niches.
The adoption of the DDS format extends beyond traditional video games to fields such as virtual reality (VR), augmented reality (AR), and professional visualization applications. In these areas, the efficiency and compression capabilities of the DDS format are particularly valuable, as they allow for the real-time rendering of high-quality textures in immersive environments. This has facilitated the development of more complex and realistic VR and AR experiences and high-resolution visualization tools for scientific and industrial applications.
Looking to the future, the continued evolution of graphics hardware and software is likely to further increase the relevance and capabilities of the DDS format. New compression algorithms, more advanced support for high dynamic range imaging, and enhanced support for emerging rendering techniques may be integrated into the DDS specification. These advancements will enable the DDS format to continue serving as a key tool in the development of cutting-edge 3D graphics and game technologies.
In conclusion, the DDS image format represents a crucial technology in the field of 3D graphics and game development, offering a blend of efficiency, quality, and flexibility that is tailored to the demands of real-time rendering. Its support for various compression algorithms, mipmapping, cubemaps, and high dynamic range imaging make it an indispensable format for developers aiming to push the boundaries of visual quality and performance. Despite some challenges related to its adoption and the introduction of artifacts through compression, the DDS format remains a cornerstone of modern 3D graphics applications, with ongoing support and advancements ensuring its continued relevance in the industry.
Supported formats
AAI.aai
AAI Dune image
AI.ai
Adobe Illustrator CS2
AVIF.avif
AV1 Image File Format
BAYER.bayer
Raw Bayer Image
BMP.bmp
Microsoft Windows bitmap image
CIN.cin
Cineon Image File
CLIP.clip
Image Clip Mask
CMYK.cmyk
Raw cyan, magenta, yellow, and black samples
CUR.cur
Microsoft icon
DCX.dcx
ZSoft IBM PC multi-page Paintbrush
DDS.dds
Microsoft DirectDraw Surface
DPX.dpx
SMTPE 268M-2003 (DPX 2.0) image
DXT1.dxt1
Microsoft DirectDraw Surface
EPDF.epdf
Encapsulated Portable Document Format
EPI.epi
Adobe Encapsulated PostScript Interchange format
EPS.eps
Adobe Encapsulated PostScript
EPSF.epsf
Adobe Encapsulated PostScript
EPSI.epsi
Adobe Encapsulated PostScript Interchange format
EPT.ept
Encapsulated PostScript with TIFF preview
EPT2.ept2
Encapsulated PostScript Level II with TIFF preview
EXR.exr
High dynamic-range (HDR) image
FF.ff
Farbfeld
FITS.fits
Flexible Image Transport System
GIF.gif
CompuServe graphics interchange format
HDR.hdr
High Dynamic Range image
HEIC.heic
High Efficiency Image Container
HRZ.hrz
Slow Scan TeleVision
ICO.ico
Microsoft icon
ICON.icon
Microsoft icon
J2C.j2c
JPEG-2000 codestream
J2K.j2k
JPEG-2000 codestream
JNG.jng
JPEG Network Graphics
JP2.jp2
JPEG-2000 File Format Syntax
JPE.jpe
Joint Photographic Experts Group JFIF format
JPEG.jpeg
Joint Photographic Experts Group JFIF format
JPG.jpg
Joint Photographic Experts Group JFIF format
JPM.jpm
JPEG-2000 File Format Syntax
JPS.jps
Joint Photographic Experts Group JPS format
JPT.jpt
JPEG-2000 File Format Syntax
JXL.jxl
JPEG XL image
MAP.map
Multi-resolution Seamless Image Database (MrSID)
MAT.mat
MATLAB level 5 image format
PAL.pal
Palm pixmap
PALM.palm
Palm pixmap
PAM.pam
Common 2-dimensional bitmap format
PBM.pbm
Portable bitmap format (black and white)
PCD.pcd
Photo CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
Palm Database ImageViewer Format
PDF.pdf
Portable Document Format
PDFA.pdfa
Portable Document Archive Format
PFM.pfm
Portable float format
PGM.pgm
Portable graymap format (gray scale)
PGX.pgx
JPEG 2000 uncompressed format
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
Joint Photographic Experts Group JFIF format
PNG.png
Portable Network Graphics
PNG00.png00
PNG inheriting bit-depth, color-type from original image
PNG24.png24
Opaque or binary transparent 24-bit RGB (zlib 1.2.11)
PNG32.png32
Opaque or binary transparent 32-bit RGBA
PNG48.png48
Opaque or binary transparent 48-bit RGB
PNG64.png64
Opaque or binary transparent 64-bit RGBA
PNG8.png8
Opaque or binary transparent 8-bit indexed
PNM.pnm
Portable anymap
PPM.ppm
Portable pixmap format (color)
PS.ps
Adobe PostScript file
PSB.psb
Adobe Large Document Format
PSD.psd
Adobe Photoshop bitmap
RGB.rgb
Raw red, green, and blue samples
RGBA.rgba
Raw red, green, blue, and alpha samples
RGBO.rgbo
Raw red, green, blue, and opacity samples
SIX.six
DEC SIXEL Graphics Format
SUN.sun
Sun Rasterfile
SVG.svg
Scalable Vector Graphics
TIFF.tiff
Tagged Image File Format
VDA.vda
Truevision Targa image
VIPS.vips
VIPS image
WBMP.wbmp
Wireless Bitmap (level 0) image
WEBP.webp
WebP Image Format
YUV.yuv
CCIR 601 4:1:1 or 4:2:2
Frequently asked questions
How does this work?
This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.
How long does it take to convert a file?
Conversions start instantly, and most files are converted in under a second. Larger files may take longer.
What happens to my files?
Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.
What file types can I convert?
We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.
How much does this cost?
This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.
Can I convert multiple files at once?
Yes! You can convert as many files as you want at once. Just select multiple files when you add them.