OCR any PCD

Unlimited jobs. Filesizes up to 2.5GB. For free, forever.

All local

Our converter runs in your browser, so we never see your data.

Blazing fast

No uploading your files to a server—conversions start instantly.

Secure by default

Unlike other converters, your files are never uploaded to us.

OCR, or Optical Character Recognition, is a technology used to convert different types of documents, such as scanned paper documents, PDF files or images captured by a digital camera, into editable and searchable data.

In the first stage of OCR, an image of a text document is scanned. This could be a photo or a scanned document. The purpose of this stage is to make a digital copy of the document, instead of requiring manual transcription. Additionally, this digitization process can also help increase the longevity of materials because it can reduce the handling of fragile resources.

Once the document is digitized, the OCR software separates the image into individual characters for recognition. This is called the segmentation process. Segmentation breaks down the document into lines, words, and then ultimately individual characters. This division is a complex process because of the myriad factors involved -- different fonts, different sizes of text, and varying alignment of the text, just to name a few.

After segmentation, the OCR algorithm then uses pattern recognition to identify each individual character. For each character, the algorithm will compare it to a database of character shapes. The closest match is then selected as the character's identity. In feature recognition, a more advanced form of OCR, the algorithm not only examines the shape but also takes into account lines and curves in a pattern.

OCR has numerous practical applications -- from digitizing printed documents, enabling text-to-speech services, automating data entry processes, to even assisting visually impaired users to better interact with text. However, it is worth noting that the OCR process isn't infallible and may make mistakes especially when dealing with low-resolution documents, complex fonts, or poorly printed texts. Hence, accuracy of OCR systems varies significantly depending upon the quality of the original document and the specifics of the OCR software being used.

OCR is a pivotal technology in modern data extraction and digitization practices. It saves significant time and resources by mitigating the need for manual data entry and providing a reliable, efficient approach to transforming physical documents into a digital format.

Frequently Asked Questions

What is OCR?

Optical Character Recognition (OCR) is a technology used to convert different types of documents, such as scanned paper documents, PDF files or images captured by a digital camera, into editable and searchable data.

How does OCR work?

OCR works by scanning an input image or document, segmenting the image into individual characters, and comparing each character with a database of character shapes using pattern recognition or feature recognition.

What are some practical applications of OCR?

OCR is used in a variety of sectors and applications, including digitizing printed documents, enabling text-to-speech services, automating data entry processes, and assisting visually impaired users to better interact with text.

Is OCR always 100% accurate?

While great advancements have been made in OCR technology, it isn't infallible. Accuracy can vary depending upon the quality of the original document and the specifics of the OCR software being used.

Can OCR recognize handwriting?

Although OCR is primarily designed for printed text, some advanced OCR systems are also able to recognize clear, consistent handwriting. However, typically handwriting recognition is less accurate because of the wide variation in individual writing styles.

Can OCR handle multiple languages?

Yes, many OCR software systems can recognize multiple languages. However, it's important to ensure that the specific language is supported by the software you're using.

What's the difference between OCR and ICR?

OCR stands for Optical Character Recognition and is used for recognizing printed text, while ICR, or Intelligent Character Recognition, is more advanced and is used for recognizing hand-written text.

Does OCR work with any font and text size?

OCR works best with clear, easy-to-read fonts and standard text sizes. While it can work with various fonts and sizes, accuracy tends to decrease when dealing with unusual fonts or very small text sizes.

What are the limitations of OCR technology?

OCR can struggle with low-resolution documents, complex fonts, poorly printed texts, handwriting, and documents with backgrounds that interfere with the text. Also, while it can work with many languages, it may not cover every language perfectly.

Can OCR scan colored text or colored backgrounds?

Yes, OCR can scan colored text and backgrounds, although it's generally more effective with high-contrast color combinations, such as black text on a white background. The accuracy might decrease when text and background colors lack sufficient contrast.

What is the PCD format?

Photo CD

The Photo CD (PCD) image format is a type of digital image format that was developed by Eastman Kodak in the early 1990s. The primary purpose of the PCD format was to allow users to store high-resolution digital photographs on a CD, which could then be viewed on a computer or a television using a dedicated Photo CD player. The PCD format was part of Kodak's broader strategy to bridge the gap between traditional film photography and the emerging digital photography market. It was designed to offer photographers and consumers a convenient way to digitize and archive their film images with high fidelity.

One of the key features of the PCD format is its use of a multiscale resolution structure, which allows a single PCD file to contain multiple resolutions of the same image. This structure is based on a proprietary image compression technique developed by Kodak known as PhotoYCC. The PhotoYCC color space is similar to the YCbCr color space used in video compression, where Y represents the luminance component, and Cb and Cr represent the chrominance components. This color space is particularly suited for photographic images because it separates the brightness information from the color information, which aligns well with the way the human visual system processes images.

The multiscale resolution structure of PCD files includes five different resolution levels, ranging from a base/preview resolution of 192x128 pixels to a maximum resolution of 3072x2048 pixels. These resolutions are referred to as Base/16, Base/4, Base, 4Base, and 16Base, with the Base resolution being 768x512 pixels. This allows for various uses, from thumbnail previews to high-quality prints. The different resolutions are stored in a hierarchical format, enabling software and hardware to quickly access the appropriate resolution level for a given task without having to process the entire image file.

PCD files are typically created using a Kodak Photo CD system, which involves scanning film negatives or slides using a high-resolution scanner and then writing the digital images to a CD in the PCD format. The scanning process is carefully calibrated to ensure accurate color reproduction and to capture the full dynamic range of the film. The resulting PCD files are intended to be a digital archive of the film images, with the ability to produce high-quality prints and to be easily shared and viewed on various devices.

The PCD format also incorporates a number of metadata fields that store information about the image and the scanning process. This metadata can include the date and time the image was captured, the type of film used, the scanner settings, and other relevant details. This information can be valuable for archival purposes, as well as for photographers who wish to keep track of the technical aspects of their images.

Despite its advanced features and the high image quality it offered, the PCD format faced several challenges that limited its widespread adoption. One of the main challenges was the proprietary nature of the format, which meant that it could only be fully utilized with Kodak's own software and hardware. This limited compatibility with third-party software and devices made it less attractive to consumers and professionals who were already using other image formats and editing software.

Another challenge for the PCD format was the rapid evolution of digital camera technology and the increasing availability of affordable digital cameras. As digital cameras became more capable and offered higher resolutions, the need to scan film images became less critical for many users. Additionally, the emergence of other digital image formats, such as JPEG and TIFF, which were more open and widely supported, provided users with more flexible and accessible options for storing and sharing digital images.

Despite these challenges, the PCD format was used by some professional photographers and enthusiasts who appreciated the high image quality and the ability to digitize film with a high degree of fidelity. For a period of time, it was also used by photo labs and service providers who offered film scanning and archiving services. However, as the digital photography market continued to grow and evolve, the use of the PCD format gradually declined.

From a technical perspective, the PCD format is notable for its use of the aforementioned PhotoYCC color space and its multiscale resolution structure. The format uses a lossy compression algorithm to reduce the file size while maintaining a high level of image quality. The compression is applied in such a way that it takes advantage of the human visual system's characteristics, emphasizing the preservation of luminance detail over chrominance detail, which is less noticeable to the human eye.

The PCD file structure is composed of several different sections, including a header, image directories for each resolution level, and the image data itself. The header contains information about the file format version and the number of images stored on the CD. Each image directory contains metadata about the image, as well as pointers to the location of the image data for that resolution level within the file.

The image data in a PCD file is stored in a tiled format, with the image divided into small rectangular sections called tiles. Each tile is compressed independently, which allows for more efficient data access and manipulation. This tiling system also facilitates the hierarchical storage of different resolution levels, as lower-resolution images can be constructed by combining and downsampling the tiles from higher-resolution levels.

To view or edit PCD files, users typically need specialized software that can read the PCD format and handle its multiscale resolution structure. Kodak provided its own software for this purpose, but there were also third-party software solutions that offered varying degrees of support for PCD files. Some modern image editing software still includes support for the PCD format, although it is less common than support for more widely used formats like JPEG and TIFF.

In terms of file size, PCD files can be quite large, especially at the highest resolution levels. This is because the format is designed to preserve the quality of the original film image, which requires a significant amount of data. However, the compression algorithm used in PCD files does help to mitigate the file size to some extent, making it more manageable to store and transfer the images.

The PCD format also includes support for a feature called 'Photo CD Portfolio,' which allows users to organize and manage their images on a CD in a structured way. This feature includes the ability to create albums, categorize images, and add descriptive text to each image. The Portfolio feature was intended to make it easier for users to navigate and enjoy their digital photo collections.

In conclusion, the PCD image format was an innovative solution for digitizing and archiving film photographs during the transition period from analog to digital photography. Its multiscale resolution structure, use of the PhotoYCC color space, and high image quality made it a valuable tool for professionals and enthusiasts who required high-fidelity digital copies of their film images. However, the proprietary nature of the format, along with the rapid advancements in digital camera technology and the rise of more flexible digital image formats, ultimately led to the decline of the PCD format. Today, it remains a part of the history of digital photography, and its technical aspects continue to be of interest to those studying the evolution of digital image storage and compression.

Supported formats

AAI.aai

AAI Dune image

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 Image File Format

AVS.avs

AVS X image

BAYER.bayer

Raw Bayer Image

BMP.bmp

Microsoft Windows bitmap image

CIN.cin

Cineon Image File

CLIP.clip

Image Clip Mask

CMYK.cmyk

Raw cyan, magenta, yellow, and black samples

CMYKA.cmyka

Raw cyan, magenta, yellow, black, and alpha samples

CUR.cur

Microsoft icon

DCX.dcx

ZSoft IBM PC multi-page Paintbrush

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) image

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Encapsulated Portable Document Format

EPI.epi

Adobe Encapsulated PostScript Interchange format

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

Adobe Encapsulated PostScript Interchange format

EPT.ept

Encapsulated PostScript with TIFF preview

EPT2.ept2

Encapsulated PostScript Level II with TIFF preview

EXR.exr

High dynamic-range (HDR) image

FARBFELD.ff

Farbfeld

FF.ff

Farbfeld

FITS.fits

Flexible Image Transport System

GIF.gif

CompuServe graphics interchange format

GIF87.gif87

CompuServe graphics interchange format (version 87a)

GROUP4.group4

Raw CCITT Group4

HDR.hdr

High Dynamic Range image

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Microsoft icon

ICON.icon

Microsoft icon

IPL.ipl

IP2 Location Image

J2C.j2c

JPEG-2000 codestream

J2K.j2k

JPEG-2000 codestream

JNG.jng

JPEG Network Graphics

JP2.jp2

JPEG-2000 File Format Syntax

JPC.jpc

JPEG-2000 codestream

JPE.jpe

Joint Photographic Experts Group JFIF format

JPEG.jpeg

Joint Photographic Experts Group JFIF format

JPG.jpg

Joint Photographic Experts Group JFIF format

JPM.jpm

JPEG-2000 File Format Syntax

JPS.jps

Joint Photographic Experts Group JPS format

JPT.jpt

JPEG-2000 File Format Syntax

JXL.jxl

JPEG XL image

MAP.map

Multi-resolution Seamless Image Database (MrSID)

MAT.mat

MATLAB level 5 image format

PAL.pal

Palm pixmap

PALM.palm

Palm pixmap

PAM.pam

Common 2-dimensional bitmap format

PBM.pbm

Portable bitmap format (black and white)

PCD.pcd

Photo CD

PCDS.pcds

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Palm Database ImageViewer Format

PDF.pdf

Portable Document Format

PDFA.pdfa

Portable Document Archive Format

PFM.pfm

Portable float format

PGM.pgm

Portable graymap format (gray scale)

PGX.pgx

JPEG 2000 uncompressed format

PICON.picon

Personal Icon

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Joint Photographic Experts Group JFIF format

PNG.png

Portable Network Graphics

PNG00.png00

PNG inheriting bit-depth, color-type from original image

PNG24.png24

Opaque or binary transparent 24-bit RGB (zlib 1.2.11)

PNG32.png32

Opaque or binary transparent 32-bit RGBA

PNG48.png48

Opaque or binary transparent 48-bit RGB

PNG64.png64

Opaque or binary transparent 64-bit RGBA

PNG8.png8

Opaque or binary transparent 8-bit indexed

PNM.pnm

Portable anymap

PPM.ppm

Portable pixmap format (color)

PS.ps

Adobe PostScript file

PSB.psb

Adobe Large Document Format

PSD.psd

Adobe Photoshop bitmap

RGB.rgb

Raw red, green, and blue samples

RGBA.rgba

Raw red, green, blue, and alpha samples

RGBO.rgbo

Raw red, green, blue, and opacity samples

SIX.six

DEC SIXEL Graphics Format

SUN.sun

Sun Rasterfile

SVG.svg

Scalable Vector Graphics

SVGZ.svgz

Compressed Scalable Vector Graphics

TIFF.tiff

Tagged Image File Format

VDA.vda

Truevision Targa image

VIPS.vips

VIPS image

WBMP.wbmp

Wireless Bitmap (level 0) image

WEBP.webp

WebP Image Format

YUV.yuv

CCIR 601 4:1:1 or 4:2:2

Frequently asked questions

How does this work?

This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.

How long does it take to convert a file?

Conversions start instantly, and most files are converted in under a second. Larger files may take longer.

What happens to my files?

Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.

What file types can I convert?

We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.

How much does this cost?

This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.

Can I convert multiple files at once?

Yes! You can convert as many files as you want at once. Just select multiple files when you add them.