OCR any PDF
Drag and drop or click to select.
Private and secure
Everything happens in your browser. Your files never touch our servers.
Blazing fast
No uploading, no waiting. Convert the moment you drop a file.
Actually free
No account required. No hidden costs. No file size tricks.
Optical Character Recognition (OCR) turns images of text—scans, smartphone photos, PDFs—into machine-readable strings and, increasingly, structured data. Modern OCR is a pipeline that cleans an image, finds text, reads it, and exports rich metadata so downstream systems can search, index, or extract fields. Two widely used output standards are hOCR, an HTML microformat for text and layout, and ALTO XML, a library/archives-oriented schema; both preserve positions, reading order, and other layout cues and are supported by popular engines like Tesseract.
A quick tour of the pipeline
Preprocessing. OCR quality starts with image cleanup: grayscale conversion, denoising, thresholding (binarization), and deskewing. Canonical OpenCV tutorials cover global, adaptive and Otsu thresholding—staples for documents with nonuniform lighting or bimodal histograms. When illumination varies within a page (think phone snaps), adaptive methods often outperform a single global threshold; Otsu automatically picks a threshold by analyzing the histogram. Tilt correction is equally important: Hough-based deskewing (Hough Line Transform) paired with Otsu binarization is a common and effective recipe in production preprocessing pipelines.
Detection vs. recognition. OCR is typically split into text detection (where is the text?) and text recognition (what does it say?). In natural scenes and many scans, fully convolutional detectors like EAST efficiently predict word- or line-level quadrilaterals without heavy proposal stages and are implemented in common toolkits (e.g., OpenCV’s text detection tutorial). On complex pages (newspapers, forms, books), segmentation of lines/regions and reading order inference matter:Kraken implements traditional zone/line segmentation and neural baseline segmentation, with explicit support for different scripts and directions (LTR/RTL/vertical).
Recognition models. The classic open-source workhorse Tesseract (open-sourced by Google, with roots at HP) evolved from a character classifier into an LSTM-based sequence recognizer and can emit searchable PDFs, hOCR/ALTO-friendly outputs, and more from the CLI. Modern recognizers rely on sequence modeling without pre-segmented characters. Connectionist Temporal Classification (CTC) remains foundational, learning alignments between input feature sequences and output label strings; it’s widely used in handwriting and scene-text pipelines.
In the last few years, Transformers reshaped OCR. TrOCR uses a vision Transformer encoder plus a text Transformer decoder, trained on large synthetic corpora then fine-tuned on real data, with strong performance across printed, handwritten and scene-text benchmarks (see also Hugging Face docs). In parallel, some systems sidestep OCR for downstream understanding: Donut (Document Understanding Transformer) is an OCR-free encoder-decoder that directly outputs structured answers (like key-value JSON) from document images (repo, model card), avoiding error accumulation when a separate OCR step feeds an IE system.
Engines and libraries
If you want batteries-included text reading across many scripts, EasyOCR offers a simple API with 80+ language models, returning boxes, text, and confidences—handy for prototypes and non-Latin scripts. For historical documents, Kraken shines with baseline segmentation and script-aware reading order; for flexible line-level training, Calamari builds on the Ocropy lineage (Ocropy) with (multi-)LSTM+CTC recognizers and a CLI for fine-tuning custom models.
Datasets and benchmarks
Generalization hinges on data. For handwriting, the IAM Handwriting Database provides writer-diverse English sentences for training and evaluation; it’s a long-standing reference set for line and word recognition. For scene text, COCO-Text layered extensive annotations over MS-COCO, with labels for printed/handwritten, legible/illegible, script, and full transcriptions (see also the original project page). The field also relies heavily on synthetic pretraining: SynthText in the Wild renders text into photographs with realistic geometry and lighting, providing huge volumes of data to pretrain detectors and recognizers (reference code & data).
Competitions under ICDAR’s Robust Reading umbrella keep evaluation grounded. Recent tasks emphasize end-to-end detection/reading and include linking words into phrases, with official code reporting precision/recall/F-score, intersection-over-union (IoU), and character-level edit-distance metrics—mirroring what practitioners should track.
Output formats and downstream use
OCR rarely ends at plain text. Archives and digital libraries prefer ALTO XML because it encodes the physical layout (blocks/lines/words with coordinates) alongside content, and it pairs well with METS packaging. The hOCR microformat, by contrast, embeds the same idea into HTML/CSS using classes like ocr_line and ocrx_word, making it easy to display, edit, and transform with web tooling. Tesseract exposes both—e.g., generating hOCR or searchable PDFs directly from the CLI (PDF output guide); Python wrappers like pytesseract add convenience. Converters exist to translate between hOCR and ALTO when repositories have fixed ingestion standards—see this curated list of OCR file-format tools.
Practical guidance
- Start with data & cleanliness. If your images are phone photos or mixed-quality scans, invest in thresholding (adaptive & Otsu) and deskew (Hough) before any model tuning. You’ll often gain more from a robust preprocessing recipe than from swapping recognizers.
- Choose the right detector. For scanned pages with regular columns, a page segmenter (zones → lines) may suffice; for natural images, single-shot detectors like EAST are strong baselines and plug into many toolkits (OpenCV example).
- Pick a recognizer that matches your text. For printed Latin, Tesseract (LSTM/OEM) is sturdy and fast; for multi-script or quick prototypes, EasyOCR is productive; for handwriting or historical typefaces, consider Kraken or Calamari and plan to fine-tune. If you need tight coupling to document understanding (key-value extraction, VQA), evaluate TrOCR (OCR) versus Donut (OCR-free) on your schema—Donut may remove a whole integration step.
- Measure what matters. For end-to-end systems, report detection F-score and recognition CER/WER (both based on Levenshtein edit distance; see CTC); for layout-heavy tasks, track IoU/tightness and character-level normalized edit distance as in ICDAR RRC evaluation kits.
- Export rich outputs. Prefer hOCR /ALTO (or both) so you keep coordinates and reading order—vital for search hit highlighting, table/field extraction, and provenance. Tesseract’s CLI and pytesseract make this a one-liner.
Looking ahead
The strongest trend is convergence: detection, recognition, language modeling, and even task-specific decoding are merging into unified Transformer stacks. Pretraining on large synthetic corpora remains a force multiplier. OCR-free models will compete aggressively wherever the target is structured outputs rather than verbatim transcripts. Expect hybrid deployments too: a lightweight detector plus a TrOCR-style recognizer for long-form text, and a Donut-style model for forms and receipts.
Further reading & tools
Tesseract (GitHub) · Tesseract docs · hOCR spec · ALTO background · EAST detector · OpenCV text detection · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · IAM handwriting · OCR file-format tools · EasyOCR
Frequently Asked Questions
What is OCR?
Optical Character Recognition (OCR) is a technology used to convert different types of documents, such as scanned paper documents, PDF files or images captured by a digital camera, into editable and searchable data.
How does OCR work?
OCR works by scanning an input image or document, segmenting the image into individual characters, and comparing each character with a database of character shapes using pattern recognition or feature recognition.
What are some practical applications of OCR?
OCR is used in a variety of sectors and applications, including digitizing printed documents, enabling text-to-speech services, automating data entry processes, and assisting visually impaired users to better interact with text.
Is OCR always 100% accurate?
While great advancements have been made in OCR technology, it isn't infallible. Accuracy can vary depending upon the quality of the original document and the specifics of the OCR software being used.
Can OCR recognize handwriting?
Although OCR is primarily designed for printed text, some advanced OCR systems are also able to recognize clear, consistent handwriting. However, typically handwriting recognition is less accurate because of the wide variation in individual writing styles.
Can OCR handle multiple languages?
Yes, many OCR software systems can recognize multiple languages. However, it's important to ensure that the specific language is supported by the software you're using.
What's the difference between OCR and ICR?
OCR stands for Optical Character Recognition and is used for recognizing printed text, while ICR, or Intelligent Character Recognition, is more advanced and is used for recognizing hand-written text.
Does OCR work with any font and text size?
OCR works best with clear, easy-to-read fonts and standard text sizes. While it can work with various fonts and sizes, accuracy tends to decrease when dealing with unusual fonts or very small text sizes.
What are the limitations of OCR technology?
OCR can struggle with low-resolution documents, complex fonts, poorly printed texts, handwriting, and documents with backgrounds that interfere with the text. Also, while it can work with many languages, it may not cover every language perfectly.
Can OCR scan colored text or colored backgrounds?
Yes, OCR can scan colored text and backgrounds, although it's generally more effective with high-contrast color combinations, such as black text on a white background. The accuracy might decrease when text and background colors lack sufficient contrast.
What is the PDF format?
Portable Document Format
The Portable Document Format (PDF) is a versatile file format developed by Adobe Systems in 1993. It is designed to present documents, including text formatting and images, in a manner independent of application software, hardware, and operating systems. PDFs can encapsulate a wide variety of content including text, fonts, vector graphics, raster images, and other information needed to display the document as it was intended. The format has become a standard for the exchange of documents across different platforms and is widely used in business, education, and government.
PDF supports several types of images, which can be broadly categorized into two groups: vector images and raster images. Vector images are made up of paths defined by mathematical equations, which makes them scalable without loss of quality. They are ideal for illustrations, logos, and text. Raster images, on the other hand, are composed of a fixed grid of pixels and are used for photographs and digital artwork. They can lose quality when scaled up or down. PDFs can contain both types of images, and they can be compressed using various algorithms to reduce file size without significantly compromising quality.
When an image is embedded in a PDF, it is typically compressed to reduce the file size. PDF supports several compression algorithms for this purpose. For raster images, lossy compression methods like JPEG are often used for photographs, as they can significantly reduce file size with minimal visible loss of quality. Lossless compression methods such as PNG and TIFF are used when image quality is paramount. For vector images, compression is achieved through the use of efficient mathematical representations of the image paths, and the use of compression algorithms like ZIP can be applied to reduce the size of these representations.
The process of embedding an image in a PDF involves several steps. First, the image is encoded using a specific compression algorithm. The encoded image data is then embedded within the PDF file structure, along with information about the image's dimensions, resolution, and color space. The PDF also stores information about how the image should be rendered, including any transformations such as scaling, rotation, or cropping that should be applied when the document is viewed or printed.
Color management is an important aspect of PDF images. PDFs support various color spaces such as DeviceRGB, DeviceCMYK, and DeviceGray, as well as more sophisticated color spaces like CalRGB and ICC-based color spaces that allow for more accurate color reproduction across different devices. When an image is embedded in a PDF, its color space is defined, and if necessary, color profiles can be embedded to ensure that the colors are displayed consistently on different devices.
Transparency is another feature supported by PDF images. This allows images to have varying levels of opacity, which can be used to create complex visual effects. Transparency in PDFs is handled through the use of special blending modes that determine how the colors of transparent objects are blended with the colors of objects behind them. This feature is particularly useful for overlaying images on top of one another or for incorporating text that overlays an image.
PDF also supports the inclusion of metadata within image files. This metadata can include information about the image such as the author, copyright, creation date, and keywords. This information can be useful for document management and retrieval, as well as for ensuring that proper credit is given for the use of copyrighted images. Metadata is stored in a standardized format within the PDF, making it easily accessible and readable by various software applications.
Security is a key feature of the PDF format, and this extends to images within PDF documents. PDFs can be encrypted, and access to them can be controlled through the use of passwords. This means that sensitive images embedded in PDFs can be protected from unauthorized access. Additionally, PDFs support digital signatures, which can be used to verify the authenticity and integrity of a document, including any images it contains.
The PDF format is also designed for accessibility, which means that it supports features that make documents usable by people with disabilities. For images, this includes the ability to include alternative text descriptions that can be read by screen readers. This ensures that the information conveyed by images is accessible to users who are visually impaired.
When it comes to printing, PDFs are highly reliable due to their self-contained nature. All the necessary information to accurately reproduce the document, including images, is embedded within the file. This means that a PDF will print the same way on any printer, regardless of the device or software being used. This is particularly important for documents that require precise layout and high-quality images, such as brochures and magazines.
PDF files can be interactive, and this extends to images as well. Images in a PDF can be hyperlinked, meaning that clicking on an image can take the user to a different part of the document or even to an external website. Additionally, PDFs can include form fields, annotations, and other interactive elements that can be associated with images, enhancing the user experience and the functionality of the document.
The creation and manipulation of PDFs, including the embedding and editing of images, can be done using a variety of software tools. Adobe Acrobat is the most well-known PDF editor, but there are many other tools available, including free and open-source options. These tools allow users to insert images into PDFs, resize and crop them, adjust their properties, and perform other editing tasks. Advanced PDF editing software can also perform optical character recognition (OCR) on images, converting text within images into searchable and editable text.
In terms of file structure, a PDF document is composed of objects that define the content of the document. These objects are organized into a hierarchical structure known as the document's 'object tree.' Images are embedded within this structure as 'image objects.' Each image object contains the stream of compressed image data, as well as a dictionary that defines the properties of the image, such as its type, width, height, color space, and any filters applied for compression.
The PDF specification has evolved over time and is now maintained by the International Organization for Standardization (ISO) as ISO 32000. This standardization ensures that PDF remains an open format and that documents created using different software and platforms can be reliably exchanged and viewed. The specification includes detailed information on how images should be formatted and embedded within PDF files, ensuring consistency across the wide range of software that can create and read PDF documents.
In conclusion, the PDF image format is a complex and feature-rich component of the PDF standard. It supports a wide range of image types and compression algorithms, sophisticated color management, transparency, and metadata. PDFs provide robust security features, accessibility options, and reliable printing capabilities. The interactive features of PDF images enhance the user experience, and the standardized structure of PDF files ensures compatibility across different platforms and devices. As a result, PDF remains one of the most widely used formats for document exchange, and understanding its capabilities with regard to images is essential for anyone working with digital documents.
Supported formats
AAI.aai
AAI Dune image
AI.ai
Adobe Illustrator CS2
AVIF.avif
AV1 Image File Format
BAYER.bayer
Raw Bayer Image
BMP.bmp
Microsoft Windows bitmap image
CIN.cin
Cineon Image File
CLIP.clip
Image Clip Mask
CMYK.cmyk
Raw cyan, magenta, yellow, and black samples
CUR.cur
Microsoft icon
DCX.dcx
ZSoft IBM PC multi-page Paintbrush
DDS.dds
Microsoft DirectDraw Surface
DPX.dpx
SMTPE 268M-2003 (DPX 2.0) image
DXT1.dxt1
Microsoft DirectDraw Surface
EPDF.epdf
Encapsulated Portable Document Format
EPI.epi
Adobe Encapsulated PostScript Interchange format
EPS.eps
Adobe Encapsulated PostScript
EPSF.epsf
Adobe Encapsulated PostScript
EPSI.epsi
Adobe Encapsulated PostScript Interchange format
EPT.ept
Encapsulated PostScript with TIFF preview
EPT2.ept2
Encapsulated PostScript Level II with TIFF preview
EXR.exr
High dynamic-range (HDR) image
FF.ff
Farbfeld
FITS.fits
Flexible Image Transport System
GIF.gif
CompuServe graphics interchange format
HDR.hdr
High Dynamic Range image
HEIC.heic
High Efficiency Image Container
HRZ.hrz
Slow Scan TeleVision
ICO.ico
Microsoft icon
ICON.icon
Microsoft icon
J2C.j2c
JPEG-2000 codestream
J2K.j2k
JPEG-2000 codestream
JNG.jng
JPEG Network Graphics
JP2.jp2
JPEG-2000 File Format Syntax
JPE.jpe
Joint Photographic Experts Group JFIF format
JPEG.jpeg
Joint Photographic Experts Group JFIF format
JPG.jpg
Joint Photographic Experts Group JFIF format
JPM.jpm
JPEG-2000 File Format Syntax
JPS.jps
Joint Photographic Experts Group JPS format
JPT.jpt
JPEG-2000 File Format Syntax
JXL.jxl
JPEG XL image
MAP.map
Multi-resolution Seamless Image Database (MrSID)
MAT.mat
MATLAB level 5 image format
PAL.pal
Palm pixmap
PALM.palm
Palm pixmap
PAM.pam
Common 2-dimensional bitmap format
PBM.pbm
Portable bitmap format (black and white)
PCD.pcd
Photo CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
Palm Database ImageViewer Format
PDF.pdf
Portable Document Format
PDFA.pdfa
Portable Document Archive Format
PFM.pfm
Portable float format
PGM.pgm
Portable graymap format (gray scale)
PGX.pgx
JPEG 2000 uncompressed format
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
Joint Photographic Experts Group JFIF format
PNG.png
Portable Network Graphics
PNG00.png00
PNG inheriting bit-depth, color-type from original image
PNG24.png24
Opaque or binary transparent 24-bit RGB (zlib 1.2.11)
PNG32.png32
Opaque or binary transparent 32-bit RGBA
PNG48.png48
Opaque or binary transparent 48-bit RGB
PNG64.png64
Opaque or binary transparent 64-bit RGBA
PNG8.png8
Opaque or binary transparent 8-bit indexed
PNM.pnm
Portable anymap
PPM.ppm
Portable pixmap format (color)
PS.ps
Adobe PostScript file
PSB.psb
Adobe Large Document Format
PSD.psd
Adobe Photoshop bitmap
RGB.rgb
Raw red, green, and blue samples
RGBA.rgba
Raw red, green, blue, and alpha samples
RGBO.rgbo
Raw red, green, blue, and opacity samples
SIX.six
DEC SIXEL Graphics Format
SUN.sun
Sun Rasterfile
SVG.svg
Scalable Vector Graphics
TIFF.tiff
Tagged Image File Format
VDA.vda
Truevision Targa image
VIPS.vips
VIPS image
WBMP.wbmp
Wireless Bitmap (level 0) image
WEBP.webp
WebP Image Format
YUV.yuv
CCIR 601 4:1:1 or 4:2:2
Frequently asked questions
How does this work?
This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.
How long does it take to convert a file?
Conversions start instantly, and most files are converted in under a second. Larger files may take longer.
What happens to my files?
Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.
What file types can I convert?
We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.
How much does this cost?
This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.
Can I convert multiple files at once?
Yes! You can convert as many files as you want at once. Just select multiple files when you add them.