Zobacz metadane EXIF dla każdego zdjęcia J2C
Przeciągnij i upuść lub kliknij, aby wybrać
Prywatne i bezpieczne
Wszystko dzieje się w Twojej przeglądarce. Twoje pliki nigdy nie dotykają naszych serwerów.
Błyskawicznie
Bez przesyłania, bez czekania. Konwertuj w momencie upuszczenia pliku.
Rzeczywiście za darmo
Nie wymaga konta. Brak ukrytych kosztów. Brak sztuczek z rozmiarem pliku.
EXIF (Exchangeable Image File Format) to blok metadanych, takich jak ekspozycja, obiektyw, znaczniki czasu, a nawet dane GPS, które aparaty i telefony osadzają w plikach graficznych. Wykorzystuje do tego system tagów w stylu TIFF, spakowany w formatach takich jak JPEG i TIFF. Jest to niezbędne do wyszukiwania, sortowania i automatyzacji w bibliotekach zdjęć, ale nieostrożne udostępnianie może prowadzić do niezamierzonego wycieku danych (ExifTool i Exiv2 ułatwiają inspekcję).
Na niskim poziomie EXIF ponownie wykorzystuje strukturę katalogu plików obrazów (IFD) formatu TIFF, a w formacie JPEG znajduje się wewnątrz znacznika APP1 (0xFFE1), skutecznie zagnieżdżając mały plik TIFF w kontenerze JPEG (przegląd JFIF; portal specyfikacji CIPA). Oficjalna specyfikacja — CIPA DC-008 (EXIF), obecnie w wersji 3.x — dokumentuje układ IFD, typy tagów i ograniczenia (CIPA DC-008; podsumowanie specyfikacji). EXIF definiuje dedykowany pod-IFD dla danych GPS (tag 0x8825) oraz IFD interoperacyjności (0xA005) (tabele tagów Exif).
Szczegóły implementacji mają znaczenie. Typowe pliki JPEG zaczynają się od segmentu JFIF APP0, po którym następuje EXIF w APP1. Starsze czytniki oczekują w pierwszej kolejności JFIF, podczas gdy nowoczesne biblioteki bez problemu analizują oba formaty (uwagi dotyczące segmentu APP). W praktyce parsery czasami zakładają kolejność lub limity rozmiaru APP, których specyfikacja nie wymaga, dlatego autorzy narzędzi dokumentują specyficzne zachowania i przypadki brzegowe (przewodnik po metadanych Exiv2; dokumentacja ExifTool).
EXIF nie ogranicza się do formatów JPEG/TIFF. Ekosystem PNG ustandaryzował chunk eXIf do przenoszenia danych EXIF w plikach PNG (wsparcie dla tego rozwiązania rośnie, a kolejność chunków w stosunku do IDAT może mieć znaczenie w niektórych implementacjach). WebP, format oparty na RIFF, obsługuje EXIF, XMP i ICC w dedykowanych chunkach (kontener WebP RIFF; libwebp). Na platformach Apple Image I/O zachowuje dane EXIF podczas konwersji do formatu HEIC/HEIF, wraz z danymi XMP i informacjami o producencie (kCGImagePropertyExifDictionary).
Jeśli kiedykolwiek zastanawiałeś się, w jaki sposób aplikacje odczytują ustawienia aparatu, mapa tagów EXIF jest odpowiedzią: Make, Model,FNumber, ExposureTime, ISOSpeedRatings, FocalLength, MeteringMode i inne znajdują się w głównych oraz podrzędnych IFD EXIF (tagi Exif; tagi Exiv2). Apple udostępnia je za pośrednictwem stałych Image I/O, takich jak ExifFNumber i GPSDictionary. Na Androidzie AndroidX ExifInterface odczytuje i zapisuje dane EXIF w formatach JPEG, PNG, WebP i HEIF.
Orientacja, czas i inne pułapki
Orientacja obrazu zasługuje na szczególną uwagę. Większość urządzeń przechowuje piksele w takiej postaci, w jakiej zostały zarejestrowane, i zapisuje tag informujący przeglądarki, jak je obrócić podczas wyświetlania. Jest to tag 274 (Orientation) z wartościami takimi jak 1 (normalna), 6 (90° zgodnie z ruchem wskazówek zegara), 3 (180°), 8 (270°). Niezastosowanie się do tego tagu lub jego nieprawidłowa aktualizacja prowadzi do obrócenia zdjęć, niedopasowania miniatur i błędów uczenia maszynowego w dalszych etapach przetwarzania (tag orientacji;praktyczny przewodnik). W procesach przetwarzania często stosuje się normalizację, fizycznie obracając piksele i ustawiając Orientation=1(ExifTool).
Rejestracja czasu jest trudniejsza, niż się wydaje. Historyczne tagi, takie jak DateTimeOriginal, nie zawierają informacji o strefie czasowej, co sprawia, że zdjęcia robione za granicą mogą być niejednoznacznie interpretowane. Nowsze tagi dodają informacje o strefie czasowej — np. OffsetTimeOriginal — dzięki czemu oprogramowanie może rejestrować DateTimeOriginal wraz z przesunięciem UTC (np. -07:00) w celu poprawnego porządkowania i geokorelacji (tagi OffsetTime*;przegląd tagów).
EXIF kontra IPTC kontra XMP
EXIF współistnieje, a czasem nakłada się, z metadanymi zdjęć IPTC (tytuły, twórcy, prawa, tematy) oraz XMP, opartym na RDF frameworkiem Adobe, znormalizowanym jako ISO 16684-1. W praktyce poprawnie zaimplementowane oprogramowanie uzgadnia dane EXIF utworzone przez aparat z danymi IPTC/XMP wprowadzonymi przez użytkownika, nie odrzucając żadnego z nich (wskazówki IPTC;LoC o XMP;LoC o EXIF).
Prywatność i bezpieczeństwo
Kwestie prywatności sprawiają, że EXIF staje się kontrowersyjny. Geotagi i numery seryjne urządzeń niejednokrotnie ujawniły wrażliwe lokalizacje. Sztandarowym przykładem jest zdjęcie Johna McAfee z 2012 roku opublikowane przez Vice, w którym współrzędne GPS z danych EXIF rzekomo ujawniły jego miejsce pobytu (Wired;The Guardian). Wiele platform społecznościowych usuwa większość danych EXIF podczas przesyłania, ale implementacje różnią się i zmieniają w czasie. Warto to zweryfikować, pobierając własne posty i sprawdzając je za pomocą odpowiedniego narzędzia (pomoc dotycząca multimediów na Twitterze;pomoc Facebooka;pomoc Instagrama).
Badacze bezpieczeństwa również uważnie obserwują parsery EXIF. Luki w powszechnie używanych bibliotekach (np. libexif) obejmowały przepełnienia bufora i odczyty poza zakresem pamięci, wywołane przez źle sformułowane tagi. Są one łatwe do spreparowania, ponieważ EXIF jest ustrukturyzowanym plikiem binarnym w przewidywalnym miejscu (porady;wyszukiwanie NVD). Należy regularnie aktualizować biblioteki metadanych i przetwarzać obrazy w środowisku izolowanym (piaskownicy), jeśli pochodzą z niezaufanych źródeł.
Praktyczne wskazówki
- Należy świadomie zarządzać informacjami o lokalizacji: wyłącz geotagowanie w aparacie, gdy jest to stosowne, lub usuń dane GPS podczas eksportu. Zachowaj prywatny oryginał, jeśli będziesz potrzebować tych danych później (ExifTool;Exiv2 CLI).
- Normalizuj orientację i znaczniki czasu w procesach przetwarzania, idealnie zapisując fizyczny obrót i usuwając niejednoznaczne tagi (lub dodając OffsetTime*). (Orientacja;OffsetTime*).
- Zachowaj metadane opisowe (prawa autorskie/prawa własności) poprzez mapowanie EXIF↔IPTC↔XMP zgodnie z aktualnymi wskazówkami IPTC i preferuj XMP dla bogatych, rozszerzalnych pól.
- W przypadku formatów PNG/WebP/HEIF sprawdź, czy Twoje biblioteki faktycznie odczytują i zapisują dane w nowoczesnych lokalizacjach EXIF/XMP. Nie zakładaj, że działają one tak samo jak w przypadku JPEG (PNG eXIf;kontener WebP;Image I/O).
- Aktualizuj zależności, ponieważ metadane są częstym celem ataków na parsery (porady dotyczące libexif).
Używany świadomie, EXIF jest kluczowym elementem, który napędza katalogi zdjęć, procesy zarządzania prawami autorskimi i systemy wizji komputerowej. Używany naiwnie, staje się cyfrowym śladem, którego możesz nie chcieć zostawiać. Dobra wiadomość jest taka, że ekosystem — specyfikacje, interfejsy API systemu operacyjnego i narzędzia — daje Ci kontrolę, której potrzebujesz (CIPA EXIF;ExifTool;Exiv2;IPTC;XMP).
Dalsza lektura i odniesienia
- CIPA EXIF DC-008 (portal specyfikacji)
- Odniesienie do tagów ExifTool (EXIF) • Segmenty JPEG APP
- Odniesienie do tagów Exiv2 • Przegląd metadanych
- PNG: pomocniczy chunk eXIf
- Kontener i metadane WebP RIFF
- Apple Image I/O • kCGImagePropertyExifDictionary
- AndroidX ExifInterface
- Metadane zdjęć IPTC
- Adobe XMP (ISO 16684-1)
- Biblioteka Kongresu: format EXIF • Biblioteka Kongresu: XMP
- porady dotyczące bezpieczeństwa libexif • NVD: libexif
- Wired o incydencie z EXIF McAfee
Często Zadawane Pytania
Czym są dane EXIF?
Dane EXIF (Exchangeable Image File Format) to zbiór metadanych dotyczących zdjęcia, takich jak ustawienia aparatu, data i czas wykonania, a nawet lokalizacja, jeśli włączony był GPS.
Jak mogę wyświetlić dane EXIF?
Większość przeglądarek i edytorów zdjęć (np. Adobe Photoshop, Przeglądarka fotografii systemu Windows) umożliwia wyświetlanie danych EXIF. Wystarczy otworzyć panel właściwości lub informacji o pliku.
Czy dane EXIF można edytować?
Tak, dane EXIF można edytować za pomocą specjalistycznego oprogramowania, takiego jak Adobe Photoshop, Lightroom, lub łatwo dostępnych narzędzi online. Pozwalają one na modyfikację lub usunięcie określonych pól metadanych.
Czy dane EXIF stwarzają zagrożenie dla prywatności?
Tak. Jeśli GPS jest włączony, dane o lokalizacji zapisane w metadanych EXIF mogą ujawnić wrażliwe informacje geograficzne. Dlatego zaleca się usuwanie lub anonimizację tych danych przed udostępnieniem zdjęć.
Jak mogę usunąć dane EXIF?
Wiele programów pozwala na usunięcie danych EXIF. Proces ten jest często nazywany 'czyszczeniem' metadanych. Istnieją również narzędzia online, które oferują taką funkcjonalność.
Czy portale społecznościowe zachowują dane EXIF?
Większość platform społecznościowych, takich jak Facebook, Instagram i Twitter, automatycznie usuwa dane EXIF z obrazów w celu ochrony prywatności użytkowników.
Jakie informacje zawierają dane EXIF?
Dane EXIF mogą zawierać m.in. model aparatu, datę i czas wykonania zdjęcia, ogniskową, czas naświetlania, przysłonę, czułość ISO, balans bieli oraz lokalizację GPS.
Dlaczego dane EXIF są przydatne dla fotografów?
Dla fotografów dane EXIF są cennym źródłem informacji o dokładnych ustawieniach użytych podczas robienia zdjęcia. Pomaga to w doskonaleniu technik i odtwarzaniu podobnych warunków w przyszłości.
Czy wszystkie obrazy zawierają dane EXIF?
Nie, tylko obrazy wykonane na urządzeniach obsługujących metadane EXIF, takich jak aparaty cyfrowe i smartfony, będą zawierać te dane.
Czy istnieje standardowy format dla danych EXIF?
Tak, dane EXIF są zgodne ze standardem określonym przez Japan Electronic Industries Development Association (JEIDA). Jednak niektórzy producenci mogą dodawać własne, dodatkowe informacje.
Jaki jest format J2C?
Strumień kodu JPEG-2000
Format obrazu J2C, znany również jako strumień kodu JPEG 2000, jest częścią pakietu standardów JPEG 2000. Sam JPEG 2000 jest standardem kompresji obrazu i systemem kodowania stworzonym przez komitet Joint Photographic Experts Group z zamiarem zastąpienia oryginalnego standardu JPEG. Standard JPEG 2000 został ustanowiony w celu zapewnienia nowego systemu kodowania obrazu o wysokiej elastyczności i lepszej wydajności niż JPEG. Został zaprojektowany w celu rozwiązania niektórych ograniczeń formatu JPEG, takich jak słaba wydajność przy niskich przepływnościach i brak skalowalności.
JPEG 2000 wykorzystuje transformację falkową w przeciwieństwie do transformacji kosinusowej dyskretnej (DCT) używanej w oryginalnym standardzie JPEG. Transformacja falkowa pozwala na wyższy stopień skalowalności i możliwość wykonywania kompresji bezstratnej, co oznacza, że oryginalny obraz można idealnie zrekonstruować z danych skompresowanych. Jest to znacząca zaleta w porównaniu ze stratną kompresją oryginalnego JPEG, która trwale traci część informacji o obrazie podczas procesu kompresji.
Format pliku J2C odnosi się konkretnie do strumienia kodu JPEG 2000. Ten strumień kodu to rzeczywiste zakodowane dane obrazu, które można osadzić w różnych formatach kontenerów, takich jak JP2 (format pliku JPEG 2000 część 1), JPX (JPEG 2000 część 2, rozszerzony format pliku) i MJ2 (format pliku Motion JPEG 2000 dla wideo). Format J2C jest zasadniczo surowymi, zakodowanymi danymi obrazu bez żadnych dodatkowych metadanych lub struktury, które mogą być dostarczone przez format kontenera.
Jedną z kluczowych cech formatu J2C jest jego obsługa zarówno kompresji bezstratnej, jak i stratnej w tym samym pliku. Osiąga się to poprzez zastosowanie odwracalnej transformacji falkowej do kompresji bezstratnej i nieodwracalnej transformacji falkowej do kompresji stratnej. Wybór między kompresją bezstratną a stratną można dokonać na podstawie kafelka w obrazie, co pozwala na połączenie obszarów wysokiej i niskiej jakości w zależności od ważności treści.
Format J2C jest również wysoce skalowalny, obsługując funkcję znaną jako „dekodowanie progresywne”. Oznacza to, że najpierw można zdekodować i wyświetlić wersję obrazu o niskiej rozdzielczości, a następnie kolejne warstwy o wyższej rozdzielczości w miarę odbierania lub przetwarzania większej ilości danych obrazu. Jest to szczególnie przydatne w aplikacjach sieciowych, w których przepustowość może być ograniczona, ponieważ umożliwia szybki podgląd obrazu, podczas gdy pełny obraz o wysokiej rozdzielczości jest nadal pobierany.
Innym ważnym aspektem formatu J2C jest jego obsługa obszarów zainteresowania (ROI). Dzięki kodowaniu ROI niektóre części obrazu można zakodować w wyższej jakości niż reszta obrazu. Jest to przydatne, gdy niektóre obszary obrazu są ważniejsze i muszą być zachowane z większą wiernością, takie jak twarze na portrecie lub tekst w dokumencie.
Format J2C zawiera również zaawansowane funkcje odporności na błędy, które sprawiają, że jest bardziej odporny na utratę danych podczas transmisji. Osiąga się to poprzez zastosowanie kodów korekcji błędów i ustrukturyzowanie strumienia kodu w sposób umożliwiający odzyskanie utraconych pakietów. Dzięki temu J2C jest dobrym wyborem do przesyłania obrazów przez niezawodne sieci lub przechowywania obrazów w sposób minimalizujący wpływ potencjalnego uszkodzenia danych.
Obsługa przestrzeni kolorów w J2C jest również bardziej zaawansowana niż w oryginalnym JPEG. Format obsługuje szeroką gamę przestrzeni kolorów, w tym skala szarości, RGB, YCbCr i inne. Pozwala również na używanie różnych przestrzeni kolorów w różnych kafelkach tego samego obrazu, zapewniając dodatkową elastyczność w sposobie kodowania i reprezentowania obraz ów.
Efektywność kompresji formatu J2C jest kolejną jego zaletą. Dzięki zastosowaniu transformacji falkowej i zaawansowanych technik kodowania entropii, takich jak kodowanie arytmetyczne, J2C może osiągnąć wyższe współczynniki kompresji niż oryginalny JPEG, szczególnie przy niższych przepływnościach. Dzięki temu jest to atrakcyjna opcja dla aplikacji, w których przestrzeń dyskowa lub przepustowość są na wagę złota, takich jak urządzenia mobilne lub aplikacje internetowe.
Pomimo wielu zalet, format J2C nie zyskał tak szerokiego zastosowania w porównaniu z oryginalnym formatem JPEG. Wynika to częściowo z większej złożoności standardu JPEG 2000, który wymaga więcej zasobów obliczeniowych do kodowania i dekodowania obrazów. Ponadto oryginalny format JPEG jest głęboko zakorzeniony w wielu systemach i ma ogromny ekosystem wsparcia oprogramowania i sprzętu, co utrudnia zdobycie przyczółka nowemu standardowi.
Jednak w niektórych specjalistycznych dziedzinach format J2C stał się preferowanym wyborem ze względu na swoje specyficzne cechy. Na przykład w obrazowaniu medycznym możliwość wykonywania kompresji bezstratnej oraz obsługa obrazów o wysokim zakresie dynamiki i wysokiej głębi bitowej sprawiają, że J2C jest idealnym formatem. Podobnie w cyfrowym kinie i archiwizacji wideo wysoka jakość formatu przy wysokich współczynnikach kompresji oraz jego funkcje skalowalności są wysoko cenione.
Proces kodowania obrazu J2C obejmuje kilka kroków. Najpierw obraz jest dzielony na kafelki, które można przetwarzać niezależnie. To kafelkowanie umożliwia przetwarzanie równoległe i może poprawić wydajność procesów kodowania i dekodowania. Następnie każdy kafelek jest przekształcany za pomocą odwracalnej lub nieodwracalnej transformacji falkowej, w zależności od tego, czy pożądana jest kompresja bezstratna czy stratna.
Po transformacji falkowej współczynniki są kwantyzowane, co polega na zmniejszeniu precyzji współczynnik ów falkowych. W kompresji bezstratnej ten krok jest pomijany, ponieważ kwantyzacja wprowadziłaby błędy. Skwantyzowane współczynniki są następnie kodowane entropią za pomocą kodowania arytmetycznego, co zmniejsza rozmiar danych, wykorzystując właściwości statystyczne zawartości obrazu.
Ostatnim krokiem w procesie kodowania jest złożenie strumienia kodu. Zakodowane entropią dane dla każdego kafelka są łączone z informacjami nagłówka opisującymi obraz i sposób jego kodowania. Obejmuje to informacje o rozmiarze obrazu, liczbie kafelków, użytej transformacji falkowej, parametrach kwantyzacji i wszelkich innych istotnych danych. Powstały strumień kodu można następnie zapisać w pliku J2C lub osadzić w formacie kontenera.
Dekodowanie obrazu J2C polega zasadniczo na odwróceniu procesu kodowania. Strumień kodu jest analizowany w celu wyodrębnienia informacji nagłówka i danych zakodowanych entropią dla każdego kafelka. Następnie dane zakodowane entropią są dekodowane w celu odzyskania skwantyzowanych współczynników falkowych. Jeśli obraz został skompresowany za pomocą kompresji stratnej, współczynniki są następnie dekwantyzowane, aby przybliżyć ich oryginalne wartości. Odwrotna transformacja falkowa jest stosowana do rekonstrukcji obrazu ze współczynników falkowych, a kafelki są zszywane razem, aby utworzyć ostateczny obraz.
Podsumowując, format obrazu J2C jest potężnym i elastycznym systemem kodowania obrazu, który oferuje kilka zalet w porównaniu z oryginalnym formatem JPEG, w tym lepszą wydajność kompresji, skalowalność i możliwość wykonywania kompresji bezstratnej. Chociaż nie osiągnął takiego samego poziomu wszechobecności jak JPEG, jest dobrze przystosowany do aplikacji wymagających obrazów wysokiej jakości lub mających specyficzne wymagania techniczne. W miarę postępu technologii i rosnącego zapotrzebowania na bardziej zaawansowane systemy kodowania obrazu, format J2C może zyskać na popularności w różnych dziedzinach.
Obsługiwane formaty
AAI.aai
Obraz AAI Dune
AI.ai
Adobe Illustrator CS2
AVIF.avif
Format plików obrazów AV1
BAYER.bayer
Surowy obraz Bayera
BMP.bmp
Obraz bitmapy Microsoft Windows
CIN.cin
Plik obrazu Cineon
CLIP.clip
Maska klipu obrazu
CMYK.cmyk
Surowe próbki cyjanu, magenty, żółtego i czarnego
CUR.cur
Ikona Microsoftu
DCX.dcx
ZSoft IBM PC wielostronicowy Paintbrush
DDS.dds
Powierzchnia DirectDraw Microsoftu
DPX.dpx
Obraz SMTPE 268M-2003 (DPX 2.0)
DXT1.dxt1
Powierzchnia DirectDraw Microsoftu
EPDF.epdf
Załączony format dokumentu przenośnego
EPI.epi
Format wymiany Adobe Encapsulated PostScript
EPS.eps
Adobe Encapsulated PostScript
EPSF.epsf
Adobe Encapsulated PostScript
EPSI.epsi
Format wymiany Adobe Encapsulated PostScript
EPT.ept
Encapsulated PostScript z podglądem TIFF
EPT2.ept2
Encapsulated PostScript Level II z podglądem TIFF
EXR.exr
Obraz o wysokim zakresie dynamiki (HDR)
FF.ff
Farbfeld
FITS.fits
Elastyczny system transportu obrazów
GIF.gif
Format wymiany grafiki CompuServe
HDR.hdr
Obraz o wysokim zakresie dynamiki
HEIC.heic
Kontener obrazu wysokiej wydajności
HRZ.hrz
Slow Scan TeleVision
ICO.ico
Ikona Microsoftu
ICON.icon
Ikona Microsoftu
J2C.j2c
Strumień kodu JPEG-2000
J2K.j2k
Strumień kodu JPEG-2000
JNG.jng
Grafika sieciowa JPEG
JP2.jp2
Składnia formatu plików JPEG-2000
JPE.jpe
Format JFIF Joint Photographic Experts Group
JPEG.jpeg
Format JFIF Joint Photographic Experts Group
JPG.jpg
Format JFIF Joint Photographic Experts Group
JPM.jpm
Składnia formatu plików JPEG-2000
JPS.jps
Format JPS Joint Photographic Experts Group
JPT.jpt
Składnia formatu plików JPEG-2000
JXL.jxl
Obraz JPEG XL
MAP.map
Baza danych obrazów wielorozdzielczościowych (MrSID)
MAT.mat
Format obrazu MATLAB level 5
PAL.pal
Pikselmapa Palm
PALM.palm
Pikselmapa Palm
PAM.pam
Powszechny format bitmapy 2-wymiarowej
PBM.pbm
Przenośny format bitmapy (czarno-biały)
PCD.pcd
Photo CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
Format ImageViewer bazy danych Palm
PDF.pdf
Przenośny format dokumentu
PDFA.pdfa
Format archiwum przenośnego dokumentu
PFM.pfm
Przenośny format float
PGM.pgm
Przenośny format szarej mapy (szarej skali)
PGX.pgx
Nieskompresowany format JPEG 2000
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
Format JFIF Grupy Ekspertów Fotografii Wspólnych
PNG.png
Przenośna grafika sieciowa
PNG00.png00
PNG dziedziczący głębię bitów, typ koloru z oryginalnego obrazu
PNG24.png24
Nieprzezroczysty lub binarnie przezroczysty 24-bitowy RGB (zlib 1.2.11)
PNG32.png32
Nieprzezroczysty lub binarnie przezroczysty 32-bitowy RGBA
PNG48.png48
Nieprzezroczysty lub binarnie przezroczysty 48-bitowy RGB
PNG64.png64
Nieprzezroczysty lub binarnie przezroczysty 64-bitowy RGBA
PNG8.png8
Nieprzezroczysty lub binarnie przezroczysty 8-bitowy indeksowany
PNM.pnm
Przenośna dowolna mapa
PPM.ppm
Przenośny format pikselmapy (kolor)
PS.ps
Plik Adobe PostScript
PSB.psb
Duży format dokumentu Adobe
PSD.psd
Bitmapa Adobe Photoshop
RGB.rgb
Surowe próbki czerwieni, zieleni i niebieskiego
RGBA.rgba
Surowe próbki czerwieni, zieleni, niebieskiego i alfa
RGBO.rgbo
Surowe próbki czerwieni, zieleni, niebieskiego i krycia
SIX.six
Format grafiki DEC SIXEL
SUN.sun
Rasterfile Sun
SVG.svg
Skalowalna grafika wektorowa
TIFF.tiff
Format pliku obrazu z tagami
VDA.vda
Obraz Truevision Targa
VIPS.vips
Obraz VIPS
WBMP.wbmp
Obraz bitmapy bezprzewodowej (poziom 0)
WEBP.webp
Format obrazu WebP
YUV.yuv
CCIR 601 4:1:1 lub 4:2:2
Często zadawane pytania
Jak to działa?
Ten konwerter działa w całości w Twojej przeglądarce. Po wybraniu pliku jest on wczytywany do pamięci i konwertowany do wybranego formatu. Następnie możesz pobrać przekonwertowany plik.
Ile czasu zajmuje konwersja pliku?
Konwersje rozpoczynają się natychmiast, a większość plików jest konwertowana w mniej niż sekundę. Większe pliki mogą zająć więcej czasu.
Co dzieje się z moimi plikami?
Twoje pliki nigdy nie są przesyłane na nasze serwery. Są one konwertowane w Twojej przeglądarce, a następnie pobierany jest przekonwertowany plik. Nigdy nie widzimy Twoich plików.
Jakie typy plików mogę konwertować?
Obsługujemy konwersję między wszystkimi formatami obrazów, w tym JPEG, PNG, GIF, WebP, SVG, BMP, TIFF i innymi.
Ile to kosztuje?
Ten konwerter jest całkowicie darmowy i zawsze będzie darmowy. Ponieważ działa w Twojej przeglądarce, nie musimy płacić za serwery, więc nie musimy pobierać od Ciebie opłat.
Czy mogę konwertować wiele plików jednocześnie?
Tak! Możesz konwertować dowolną liczbę plików jednocześnie. Wystarczy wybrać wiele plików podczas ich dodawania.