Zobacz JPEGs
Przeciągnij i upuść lub kliknij, aby wybrać
Prywatne i bezpieczne
Wszystko dzieje się w Twojej przeglądarce. Twoje pliki nigdy nie dotykają naszych serwerów.
Błyskawicznie
Bez przesyłania, bez czekania. Konwertuj w momencie upuszczenia pliku.
Rzeczywiście za darmo
Nie wymaga konta. Brak ukrytych kosztów. Brak sztuczek z rozmiarem pliku.
Jaki jest format JPEG?
Format JFIF Joint Photographic Experts Group
JPEG, co oznacza Joint Photographic Experts Group, to powszechnie stosowana metoda kompresji stratnej dla obrazów cyfrowych, szczególnie tych uzyskanych za pomocą fotografii cyfrowej. Stopień kompresji można regulować, co pozwala na wybór kompromisu między rozmiarem pliku a jakością obrazu. JPEG zwykle osiąga kompresję 10:1 przy niewielkiej zauważalnej utracie jakości obrazu.
Algorytm kompresji JPEG stanowi podstawę standardu JPEG. Proces rozpoczyna się od konwersji obrazu cyfrowego z typowej przestrzeni kolorów RGB do innej przestrzeni kolorów znanej jako YCbCr. Przestrzeń kolorów YCbCr dzieli obraz na luminancję (Y), która reprezentuje poziomy jasności, oraz chrominancję (Cb i Cr), która reprezentuje informacje o kolorze. Ten podział jest korzystny, ponieważ ludzkie oko jest bardziej wrażliwe na zmiany jasności niż koloru, co pozwala kompresji wykorzystać to poprzez kompresowanie informacji o kolorze bardziej niż luminancji.
Gdy obraz znajduje się w przestrzeni kolorów YCbCr, następnym krokiem w procesie kompresji JPEG jest zmniejszenie próbkowania kanałów chrominancji. Zmniejszenie próbkowania zmniejsza rozdzielczość informacji o chrominancji, co zwykle nie wpływa znacząco na postrzeganą jakość obrazu ze względu na niższą wrażliwość ludzkiego oka na szczegóły kolorów. Ten krok jest opcjonalny i można go dostosować w zależności od pożądanego balansu między jakością obrazu a rozmiarem pliku.
Po zmniejszeniu próbkowania obraz jest dzielony na bloki, zwykle o rozmiarze 8x8 pikseli. Następnie każdy blok jest przetwarzany osobno. Pierwszym krokiem w przetwarzaniu każdego bloku jest zastosowanie dyskretnej transformacji kosinusowej (DCT). DCT to operacja matematyczna, która przekształca dane domeny przestrzennej (wartości pikseli) w domenę częstotliwości. Wynikiem jest macierz współczynników częstotliwości, które reprezentują dane bloku obrazu w kategoriach jego składowych częstotliwości przestrzennej.
Współczynniki częstotliwości wynikające z DCT są następnie kwantyzowane. Kwantyzacja to proces mapowania dużego zestawu wartości wejściowych na mniejszy zestaw – w przypadku JPEG oznacza to zmniejszenie precyzji współczynników częstotliwości. W tym miejscu następuje stratna część kompresji, ponieważ część informacji o obrazie jest odrzucana. Krok kwantyzacji jest kontrolowany przez tabelę kwantyzacji, która określa, ile kompresji jest stosowane do każdej składowej częstotliwości. Tabele kwantyzacji można dostosować, aby uzyskać wyższą jakość obrazu (mniej kompresji) lub mniejszy rozmiar pliku (więcej kompresji).
Po kwantyzacji współczynniki są układane w kolejności zygzakowatej, zaczynając od lewego górnego rogu i postępując zgodnie ze schematem, który priorytetyzuje niższe składowe częstotliwości nad wyższymi. Wynika to z faktu, że niższe składowe częstotliwości (które reprezentują bardziej jednolite części obrazu) są ważniejsze dla ogólnego wyglądu niż wyższe składowe częstotliwości (które reprezentują drobniejsze szczegóły i krawędzie).
Następnym krokiem w procesie kompresji JPEG jest kodowanie entropii, które jest metodą kompresji bezstratnej. Najczęstszą formą kodowania entropii stosowaną w JPEG jest kodowanie Huffmana, chociaż kodowanie arytmetyczne jest również opcją. Kodowanie Huffmana działa poprzez przypisywanie krótszych kodów do częstszych wystąpień i dłuższych kodów do rzadszych wystąpień. Ponieważ porządek zygzakowaty ma tendencję do grupowania podobnych współczynników częstotliwości, zwiększa to wydajność kodowania Huffmana.
Po zakończeniu kodowania entropii skompresowane dane są przechowywane w formacie pliku zgodnym ze standardem JPEG. Ten format pliku zawiera nagłówek, który zawiera informacje o obrazie, takie jak jego wymiary i użyte tabele kwantyzacji, a następnie zakodowane kodem Huffmana dane obrazu. Format pliku obsługuje również dołączanie metadanych, takich jak dane EXIF, które mogą zawierać informacje o ustawieniach aparatu użytego do wykonania zdjęcia, dacie i godzinie wykonania zdjęcia oraz innych istotnych szczegółach.
Gdy obraz JPEG jest otwierany, proces dekompresji zasadniczo odwraca kroki kompresji. Dane zakodowane kodem Huffmana są dekodowane, skwantyzowane współczynniki częstotliwości są dekwantyzowane przy użyciu tych samych tabel kwantyzacji, które były używane podczas kompresji, a odwrotna dyskretna transformacja kosinusowa (IDCT) jest stosowana do każdego bloku w celu przekonwertowania danych domeny częstotliwości z powrotem do wartości pikseli domeny przestrzennej.
Procesy dekwantyzacji i IDCT wprowadzają pewne błędy ze względu na stratny charakter kompresji, dlatego JPEG nie jest idealny dla obrazów, które będą podlegały wielokrotnym edycjom i ponownym zapisom. Za każdym razem, gdy obraz JPEG jest zapisywany, przechodzi ponownie przez proces kompresji, a dodatkowe informacje o obrazie są tracone. Może to prowadzić do zauważalnego pogorszenia jakości obrazu w czasie, zjawisko znane jako „utrata generacji”.
Pomimo stratnego charakteru kompresji JPEG pozostaje popularnym formatem obrazu ze względu na swoją elastyczność i wydajność. Obrazy JPEG mogą mieć bardzo mały rozmiar pliku, co czyni je idealnymi do użytku w Internecie, gdzie przepustowość i czasy ładowania są ważnymi czynnikami. Ponadto standard JPEG zawiera tryb progresywny, który pozwala na zakodowanie obrazu w taki sposób, aby można go było dekodować w wielu przejściach, przy czym każde przejście poprawia rozdzielczość obrazu. Jest to szczególnie przydatne w przypadku obrazów internetowych, ponieważ pozwala na szybkie wyświetlenie wersji obrazu o niskiej jakości, a jakość poprawia się wraz z pobieraniem większej ilości danych.
JPEG ma również pewne ograniczenia i nie zawsze jest najlepszym wyborem dla wszystkich typów obrazów. Na przykład nie nadaje się do obrazów z ostrymi krawędziami lub tekstem o wysokim kontraście, ponieważ kompresja może tworzyć zauważalne artefakty wokół tych obszarów. Ponadto JPEG nie obsługuje przezroczystości, która jest funkcją oferowaną przez inne formaty, takie jak PNG i GIF.
Aby rozwiązać niektóre ograniczenia oryginalnego standardu JPEG, opracowano nowe formaty, takie jak JPEG 2000 i JPEG XR. Formaty te oferują lepszą wydajność kompresji, obsługę większych głębi bitowych oraz dodatkowe funkcje, takie jak przezroczystość i kompresja bezstratna. Jednak nie osiągnęły jeszcze takiego samego poziomu powszechnej akceptacji jak oryginalny format JPEG.
Podsumowując, format obrazu JPEG to złożona równowaga matematyki, ludzkiej psychologii wzrokowej i informatyki. Jego szerokie zastosowanie świadczy o jego skuteczności w zmniejszaniu rozmiarów plików przy jednoczesnym zachowaniu poziomu jakości obrazu, który jest akceptowalny dla większości zastosowań. Zrozumienie aspektów technicznych JPEG może pomóc użytkownikom podejmować świadome decyzje o tym, kiedy używać tego formatu i jak optymalizować swoje obrazy pod kątem równowagi jakości i rozmiaru pliku, która najlepiej odpowiada ich potrzebom.
Obsługiwane formaty
AAI.aai
Obraz AAI Dune
AI.ai
Adobe Illustrator CS2
AVIF.avif
Format plików obrazów AV1
BAYER.bayer
Surowy obraz Bayera
BMP.bmp
Obraz bitmapy Microsoft Windows
CIN.cin
Plik obrazu Cineon
CLIP.clip
Maska klipu obrazu
CMYK.cmyk
Surowe próbki cyjanu, magenty, żółtego i czarnego
CUR.cur
Ikona Microsoftu
DCX.dcx
ZSoft IBM PC wielostronicowy Paintbrush
DDS.dds
Powierzchnia DirectDraw Microsoftu
DPX.dpx
Obraz SMTPE 268M-2003 (DPX 2.0)
DXT1.dxt1
Powierzchnia DirectDraw Microsoftu
EPDF.epdf
Załączony format dokumentu przenośnego
EPI.epi
Format wymiany Adobe Encapsulated PostScript
EPS.eps
Adobe Encapsulated PostScript
EPSF.epsf
Adobe Encapsulated PostScript
EPSI.epsi
Format wymiany Adobe Encapsulated PostScript
EPT.ept
Encapsulated PostScript z podglądem TIFF
EPT2.ept2
Encapsulated PostScript Level II z podglądem TIFF
EXR.exr
Obraz o wysokim zakresie dynamiki (HDR)
FF.ff
Farbfeld
FITS.fits
Elastyczny system transportu obrazów
GIF.gif
Format wymiany grafiki CompuServe
HDR.hdr
Obraz o wysokim zakresie dynamiki
HEIC.heic
Kontener obrazu wysokiej wydajności
HRZ.hrz
Slow Scan TeleVision
ICO.ico
Ikona Microsoftu
ICON.icon
Ikona Microsoftu
J2C.j2c
Strumień kodu JPEG-2000
J2K.j2k
Strumień kodu JPEG-2000
JNG.jng
Grafika sieciowa JPEG
JP2.jp2
Składnia formatu plików JPEG-2000
JPE.jpe
Format JFIF Joint Photographic Experts Group
JPEG.jpeg
Format JFIF Joint Photographic Experts Group
JPG.jpg
Format JFIF Joint Photographic Experts Group
JPM.jpm
Składnia formatu plików JPEG-2000
JPS.jps
Format JPS Joint Photographic Experts Group
JPT.jpt
Składnia formatu plików JPEG-2000
JXL.jxl
Obraz JPEG XL
MAP.map
Baza danych obrazów wielorozdzielczościowych (MrSID)
MAT.mat
Format obrazu MATLAB level 5
PAL.pal
Pikselmapa Palm
PALM.palm
Pikselmapa Palm
PAM.pam
Powszechny format bitmapy 2-wymiarowej
PBM.pbm
Przenośny format bitmapy (czarno-biały)
PCD.pcd
Photo CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
Format ImageViewer bazy danych Palm
PDF.pdf
Przenośny format dokumentu
PDFA.pdfa
Format archiwum przenośnego dokumentu
PFM.pfm
Przenośny format float
PGM.pgm
Przenośny format szarej mapy (szarej skali)
PGX.pgx
Nieskompresowany format JPEG 2000
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
Format JFIF Grupy Ekspertów Fotografii Wspólnych
PNG.png
Przenośna grafika sieciowa
PNG00.png00
PNG dziedziczący głębię bitów, typ koloru z oryginalnego obrazu
PNG24.png24
Nieprzezroczysty lub binarnie przezroczysty 24-bitowy RGB (zlib 1.2.11)
PNG32.png32
Nieprzezroczysty lub binarnie przezroczysty 32-bitowy RGBA
PNG48.png48
Nieprzezroczysty lub binarnie przezroczysty 48-bitowy RGB
PNG64.png64
Nieprzezroczysty lub binarnie przezroczysty 64-bitowy RGBA
PNG8.png8
Nieprzezroczysty lub binarnie przezroczysty 8-bitowy indeksowany
PNM.pnm
Przenośna dowolna mapa
PPM.ppm
Przenośny format pikselmapy (kolor)
PS.ps
Plik Adobe PostScript
PSB.psb
Duży format dokumentu Adobe
PSD.psd
Bitmapa Adobe Photoshop
RGB.rgb
Surowe próbki czerwieni, zieleni i niebieskiego
RGBA.rgba
Surowe próbki czerwieni, zieleni, niebieskiego i alfa
RGBO.rgbo
Surowe próbki czerwieni, zieleni, niebieskiego i krycia
SIX.six
Format grafiki DEC SIXEL
SUN.sun
Rasterfile Sun
SVG.svg
Skalowalna grafika wektorowa
TIFF.tiff
Format pliku obrazu z tagami
VDA.vda
Obraz Truevision Targa
VIPS.vips
Obraz VIPS
WBMP.wbmp
Obraz bitmapy bezprzewodowej (poziom 0)
WEBP.webp
Format obrazu WebP
YUV.yuv
CCIR 601 4:1:1 lub 4:2:2
Często zadawane pytania
Jak to działa?
Ten konwerter działa w całości w Twojej przeglądarce. Po wybraniu pliku jest on wczytywany do pamięci i konwertowany do wybranego formatu. Następnie możesz pobrać przekonwertowany plik.
Ile czasu zajmuje konwersja pliku?
Konwersje rozpoczynają się natychmiast, a większość plików jest konwertowana w mniej niż sekundę. Większe pliki mogą zająć więcej czasu.
Co dzieje się z moimi plikami?
Twoje pliki nigdy nie są przesyłane na nasze serwery. Są one konwertowane w Twojej przeglądarce, a następnie pobierany jest przekonwertowany plik. Nigdy nie widzimy Twoich plików.
Jakie typy plików mogę konwertować?
Obsługujemy konwersję między wszystkimi formatami obrazów, w tym JPEG, PNG, GIF, WebP, SVG, BMP, TIFF i innymi.
Ile to kosztuje?
Ten konwerter jest całkowicie darmowy i zawsze będzie darmowy. Ponieważ działa w Twojej przeglądarce, nie musimy płacić za serwery, więc nie musimy pobierać od Ciebie opłat.
Czy mogę konwertować wiele plików jednocześnie?
Tak! Możesz konwertować dowolną liczbę plików jednocześnie. Wystarczy wybrać wiele plików podczas ich dodawania.