JPEG Background Remover
Drag and drop or click to select.
Private and secure
Everything happens in your browser. Your files never touch our servers.
Blazing fast
No uploading, no waiting. Convert the moment you drop a file.
Actually free
No account required. No hidden costs. No file size tricks.
Background removal separates a subject from its surroundings so you can place it on transparency, swap the scene, or composite it into a new design. Under the hood you’re estimating an alpha matte—a per-pixel opacity from 0 to 1—and then alpha-compositing the foreground over something else. This is the math from Porter–Duff and the cause of familiar pitfalls like “fringes” and straight vs. premultiplied alpha. For practical guidance on premultiplication and linear color, see Microsoft’s Win2D notes, Søren Sandmann, and Lomont’s write-up on linear blending.
The main ways people remove backgrounds
1) Chroma key (“green/blue screen”)
If you can control capture, paint the backdrop a solid color (often green) and key that hue away. It’s fast, battle-tested in film and broadcast, and ideal for video. The trade-offs are lighting and wardrobe: colored light spills onto edges (especially hair), so you’ll use despill tools to neutralize contamination. Good primers include Nuke’s docs, Mixing Light, and a hands-on Fusion demo.
2) Interactive segmentation (classic CV)
For single images with messy backgrounds, interactive algorithms need a few user hints—e.g., a loose rectangle or scribbles—and converge to a crisp mask. The canonical method is GrabCut (book chapter), which learns color models for foreground/background and uses graph cuts iteratively to separate them. You’ll see similar ideas in GIMP’s Foreground Select based on SIOX (ImageJ plugin).
3) Image matting (fine-grained alpha)
Matting solves fractional transparency at wispy boundaries (hair, fur, smoke, glass). Classic closed-form matting takes a trimap (definitely-fore/definitely-back/unknown) and solves a linear system for alpha with strong edge fidelity. Modern deep image matting trains neural nets on the Adobe Composition-1K dataset (MMEditing docs), and is evaluated with metrics like SAD, MSE, Gradient, and Connectivity (benchmark explainer).
4) Deep learning cutouts (no trimap)
- U2-Net (salient-object detection) is a strong general “remove background” engine (repo).
- MODNet targets real-time portrait matting (PDF).
- F, B, Alpha (FBA) Matting jointly predicts foreground, background, and alpha to reduce color halos (repo).
- Background Matting V2 assumes a background plate and yields strand-level mattes in real time at up to 4K/30fps (project page, repo).
Related segmentation work is also useful: DeepLabv3+ refines boundaries with an encoder–decoder and atrous convolutions (PDF); Mask R-CNN gives per-instance masks (PDF); and SAM (Segment Anything) is a promptable foundation model that zero-shots masks on unfamiliar images.
What popular tools do
- Photoshop: Remove Background quick action runs “Select Subject → layer mask” under the hood (confirmed here; tutorial).
- GIMP: Foreground Select (SIOX).
- Canva: 1-click Background Remover for images and short video.
- remove.bg: web app + API for automation.
- Apple devices: system-level “Lift Subject” in Photos/Safari/Quick Look (cutouts on iOS).
Workflow tips for cleaner cutouts
- Shoot smart. Good lighting and strong subject–background contrast help every method. With green/blue screens, plan for despill (guide).
- Start broad, refine narrow. Run an automatic selection (Select Subject, U2-Net, SAM), then refine edges with brushes or matting (e.g., closed-form).
- Mind semi-transparency. Glass, veils, motion blur, flyaway hair need true alpha (not just a hard mask). Methods that also recover F/B/α minimize halos.
- Know your alpha. Straight vs. premultiplied produce different edge behavior; export/composite consistently (see overview, Hargreaves).
- Pick the right output. For “no background,” deliver a raster with a clean alpha (e.g., PNG/WebP) or keep layered files with masks if further edits are expected. The key is the quality of the alpha you computed—rooted in Porter–Duff.
Quality & evaluation
Academic work reports SAD, MSE, Gradient, and Connectivity errors on Composition-1K. If you’re picking a model, look for those metrics (metric defs; Background Matting metrics section). For portraits/video, MODNet and Background Matting V2 are strong; for general “salient object” images, U2-Net is a solid baseline; for tough transparency, FBA can be cleaner.
Common edge cases (and fixes)
- Hair & fur: favor matting (trimap or portrait matting like MODNet) and inspect on a checkerboard.
- Fine structures (bike spokes, fishing line): use high-res inputs and a boundary-aware segmenter such as DeepLabv3+ as a pre-step before matting.
- See-through stuff (smoke, glass): you need fractional alpha and often foreground color estimation (FBA).
- Video conferencing: if you can capture a clean plate, Background Matting V2 looks more natural than naive “virtual background” toggles.
Where this shows up in the real world
- E-commerce: marketplaces (e.g., Amazon) often require a pure white main image background; see Product image guide (RGB 255,255,255).
- Design tools: Canva’s Background Remover and Photoshop’s Remove Background streamline quick cutouts.
- On-device convenience: iOS/macOS “Lift Subject” is great for casual sharing.
Why cutouts sometimes look fake (and fixes)
- Color spill: green/blue light wraps onto the subject—use despill controls or targeted color replacement.
- Halo/fringes: usually an alpha-interpretation mismatch (straight vs. premultiplied) or edge pixels contaminated by the old background; convert/interpret correctly (overview, details).
- Wrong blur/grain: paste a razor-sharp subject into a soft background and it pops; match lens blur and grain after compositing (see Porter–Duff basics).
TL;DR playbook
- If you control capture: use chroma key; light evenly; plan despill.
- If it’s a one-off photo: try Photoshop’s Remove Background, Canva’s remover, or remove.bg; refine with brushes/matting for hair.
- If you need production-grade edges: use matting ( closed-form or deep) and check alpha on transparency; mind alpha interpretation.
- For portraits/video: consider MODNet or Background Matting V2; for click-guided segmentation, SAM is a powerful front-end.
What is the JPEG format?
Joint Photographic Experts Group JFIF format
JPEG, which stands for Joint Photographic Experts Group, is a commonly used method of lossy compression for digital images, particularly for those images produced by digital photography. The degree of compression can be adjusted, allowing a selectable tradeoff between storage size and image quality. JPEG typically achieves 10:1 compression with little perceptible loss in image quality.
The JPEG compression algorithm is at the core of the JPEG standard. The process begins with a digital image being converted from its typical RGB color space into a different color space known as YCbCr. The YCbCr color space separates the image into luminance (Y), which represents the brightness levels, and chrominance (Cb and Cr), which represent the color information. This separation is beneficial because the human eye is more sensitive to variations in brightness than color, allowing the compression to take advantage of this by compressing color information more than luminance.
Once the image is in the YCbCr color space, the next step in the JPEG compression process is to downsample the chrominance channels. Downsampling reduces the resolution of the chrominance information, which typically doesn't affect the perceived quality of the image significantly, due to the human eye's lower sensitivity to color detail. This step is optional and can be adjusted depending on the desired balance between image quality and file size.
After downsampling, the image is divided into blocks, typically 8x8 pixels in size. Each block is then processed separately. The first step in processing each block is to apply the Discrete Cosine Transform (DCT). The DCT is a mathematical operation that transforms the spatial domain data (the pixel values) into the frequency domain. The result is a matrix of frequency coefficients that represent the image block's data in terms of its spatial frequency components.
The frequency coefficients resulting from the DCT are then quantized. Quantization is the process of mapping a large set of input values to a smaller set – in the case of JPEG, this means reducing the precision of the frequency coefficients. This is where the lossy part of the compression occurs, as some image information is discarded. The quantization step is controlled by a quantization table, which determines how much compression is applied to each frequency component. The quantization tables can be adjusted to favor higher image quality (less compression) or smaller file size (more compression).
After quantization, the coefficients are arranged in a zigzag order, starting from the top-left corner and following a pattern that prioritizes lower frequency components over higher frequency ones. This is because lower frequency components (which represent the more uniform parts of the image) are more important for the overall appearance than higher frequency components (which represent the finer details and edges).
The next step in the JPEG compression process is entropy coding, which is a method of lossless compression. The most common form of entropy coding used in JPEG is Huffman coding, although arithmetic coding is also an option. Huffman coding works by assigning shorter codes to more frequent occurrences and longer codes to less frequent occurrences. Since the zigzag ordering tends to group similar frequency coefficients together, it increases the efficiency of the Huffman coding.
Once the entropy coding is complete, the compressed data is stored in a file format that conforms to the JPEG standard. This file format includes a header that contains information about the image, such as its dimensions and the quantization tables used, followed by the Huffman-coded image data. The file format also supports the inclusion of metadata, such as EXIF data, which can contain information about the camera settings used to take the photograph, the date and time it was taken, and other relevant details.
When a JPEG image is opened, the decompression process essentially reverses the compression steps. The Huffman-coded data is decoded, the quantized frequency coefficients are de-quantized using the same quantization tables that were used during compression, and the inverse Discrete Cosine Transform (IDCT) is applied to each block to convert the frequency domain data back into spatial domain pixel values.
The de-quantization and IDCT processes introduce some errors due to the lossy nature of the compression, which is why JPEG is not ideal for images that will undergo multiple edits and re-saves. Each time a JPEG image is saved, it goes through the compression process again, and additional image information is lost. This can lead to a noticeable degradation in image quality over time, a phenomenon known as 'generation loss'.
Despite the lossy nature of JPEG compression, it remains a popular image format due to its flexibility and efficiency. JPEG images can be very small in file size, which makes them ideal for use on the web, where bandwidth and loading times are important considerations. Additionally, the JPEG standard includes a progressive mode, which allows an image to be encoded in such a way that it can be decoded in multiple passes, each pass improving the image's resolution. This is particularly useful for web images, as it allows a low-quality version of the image to be displayed quickly, with the quality improving as more data is downloaded.
JPEG also has some limitations and is not always the best choice for all types of images. For example, it is not well-suited for images with sharp edges or high contrast text, as the compression can create noticeable artifacts around these areas. Additionally, JPEG does not support transparency, which is a feature provided by other formats like PNG and GIF.
To address some of the limitations of the original JPEG standard, new formats have been developed, such as JPEG 2000 and JPEG XR. These formats offer improved compression efficiency, support for higher bit depths, and additional features like transparency and lossless compression. However, they have not yet achieved the same level of widespread adoption as the original JPEG format.
In conclusion, the JPEG image format is a complex balance of mathematics, human visual psychology, and computer science. Its widespread use is a testament to its effectiveness in reducing file sizes while maintaining a level of image quality that is acceptable for most applications. Understanding the technical aspects of JPEG can help users make informed decisions about when to use this format and how to optimize their images for the balance of quality and file size that best suits their needs.
Supported formats
AAI.aai
AAI Dune image
AI.ai
Adobe Illustrator CS2
AVIF.avif
AV1 Image File Format
BAYER.bayer
Raw Bayer Image
BMP.bmp
Microsoft Windows bitmap image
CIN.cin
Cineon Image File
CLIP.clip
Image Clip Mask
CMYK.cmyk
Raw cyan, magenta, yellow, and black samples
CUR.cur
Microsoft icon
DCX.dcx
ZSoft IBM PC multi-page Paintbrush
DDS.dds
Microsoft DirectDraw Surface
DPX.dpx
SMTPE 268M-2003 (DPX 2.0) image
DXT1.dxt1
Microsoft DirectDraw Surface
EPDF.epdf
Encapsulated Portable Document Format
EPI.epi
Adobe Encapsulated PostScript Interchange format
EPS.eps
Adobe Encapsulated PostScript
EPSF.epsf
Adobe Encapsulated PostScript
EPSI.epsi
Adobe Encapsulated PostScript Interchange format
EPT.ept
Encapsulated PostScript with TIFF preview
EPT2.ept2
Encapsulated PostScript Level II with TIFF preview
EXR.exr
High dynamic-range (HDR) image
FF.ff
Farbfeld
FITS.fits
Flexible Image Transport System
GIF.gif
CompuServe graphics interchange format
HDR.hdr
High Dynamic Range image
HEIC.heic
High Efficiency Image Container
HRZ.hrz
Slow Scan TeleVision
ICO.ico
Microsoft icon
ICON.icon
Microsoft icon
J2C.j2c
JPEG-2000 codestream
J2K.j2k
JPEG-2000 codestream
JNG.jng
JPEG Network Graphics
JP2.jp2
JPEG-2000 File Format Syntax
JPE.jpe
Joint Photographic Experts Group JFIF format
JPEG.jpeg
Joint Photographic Experts Group JFIF format
JPG.jpg
Joint Photographic Experts Group JFIF format
JPM.jpm
JPEG-2000 File Format Syntax
JPS.jps
Joint Photographic Experts Group JPS format
JPT.jpt
JPEG-2000 File Format Syntax
JXL.jxl
JPEG XL image
MAP.map
Multi-resolution Seamless Image Database (MrSID)
MAT.mat
MATLAB level 5 image format
PAL.pal
Palm pixmap
PALM.palm
Palm pixmap
PAM.pam
Common 2-dimensional bitmap format
PBM.pbm
Portable bitmap format (black and white)
PCD.pcd
Photo CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
Palm Database ImageViewer Format
PDF.pdf
Portable Document Format
PDFA.pdfa
Portable Document Archive Format
PFM.pfm
Portable float format
PGM.pgm
Portable graymap format (gray scale)
PGX.pgx
JPEG 2000 uncompressed format
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
Joint Photographic Experts Group JFIF format
PNG.png
Portable Network Graphics
PNG00.png00
PNG inheriting bit-depth, color-type from original image
PNG24.png24
Opaque or binary transparent 24-bit RGB (zlib 1.2.11)
PNG32.png32
Opaque or binary transparent 32-bit RGBA
PNG48.png48
Opaque or binary transparent 48-bit RGB
PNG64.png64
Opaque or binary transparent 64-bit RGBA
PNG8.png8
Opaque or binary transparent 8-bit indexed
PNM.pnm
Portable anymap
PPM.ppm
Portable pixmap format (color)
PS.ps
Adobe PostScript file
PSB.psb
Adobe Large Document Format
PSD.psd
Adobe Photoshop bitmap
RGB.rgb
Raw red, green, and blue samples
RGBA.rgba
Raw red, green, blue, and alpha samples
RGBO.rgbo
Raw red, green, blue, and opacity samples
SIX.six
DEC SIXEL Graphics Format
SUN.sun
Sun Rasterfile
SVG.svg
Scalable Vector Graphics
TIFF.tiff
Tagged Image File Format
VDA.vda
Truevision Targa image
VIPS.vips
VIPS image
WBMP.wbmp
Wireless Bitmap (level 0) image
WEBP.webp
WebP Image Format
YUV.yuv
CCIR 601 4:1:1 or 4:2:2
Frequently asked questions
How does this work?
This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.
How long does it take to convert a file?
Conversions start instantly, and most files are converted in under a second. Larger files may take longer.
What happens to my files?
Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.
What file types can I convert?
We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.
How much does this cost?
This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.
Can I convert multiple files at once?
Yes! You can convert as many files as you want at once. Just select multiple files when you add them.