OCR любого ICON
Перетащите и отпустите или нажмите для выбора
Конфиденциально и безопасно
Все происходит в вашем браузере. Ваши файлы никогда не попадают на наши серверы.
Молниеносно
Никаких загрузок, никаких ожиданий. Конвертируйте в тот момент, когда вы перетаскиваете файл.
Действительно бесплатно
Не требуется учетная запись. Никаких скрытых платежей. Никаких уловок с размером файла.
Оптическое распознавание символов (OCR) преобразует изображения текста — сканы, фотографии со смартфона, PDF-файлы — в машиночитаемые строки и, все чаще, в структурированные данные. Современное OCR — это конвейер, который очищает изображение, находит текст, читает его и экспортирует богатые метаданные, чтобы последующие системы могли искать, индексировать или извлекать поля. Два широко используемых стандарта вывода: hOCR, микроформат HTML для тек ста и макета, и ALTO XML, схема, ориентированная на библиотеки/архивы; оба сохраняют позиции, порядок чтения и другие подсказки макета и поддерживаются популярными движками, такими как Tesseract.
Краткий обзор конвейера
Предварительная обработка. Качество OCR начинается с очистки изображения: преобразования в оттенки серого, удаления шума, пороговой обработки (бинаризации) и выравнивания. Канонические учебные пособия по OpenCV охватывают глобальную, адаптивную и пороговую обработку Оцу — основные методы для документов с неравномерным освещением или бимодальными гистограммами. Когда освещение меняется в пределах страницы (подумайте о снимках с телефона), адаптивные методы часто превосходят один глобальный порог; Оцу автоматически выбирает порог, анализируя гистограмму. Коррекция наклона не менее важна: выравниван ие на основе преобразования Хафа (преобразование Хафа для линий) в паре с бинаризацией Оцу является распространенным и эффективным рецептом в производственных конвейерах предварительной обработки.
Обнаружение и распознавание. OCR обычно делится на обнаружение текста (где находится текст?) и распознавание текста (что он говорит?). В естественных сценах и многих сканах полностью сверточные детекторы, такие как EAST , эффективно предсказывают четырехугольники на уровне слов или строк без тяжелых этапов предложения и реализованы в общих наборах инструментов (например, учебное пособие по обнаружению текста в OpenCV). На сложных страницах (газеты, формы, книги) важны сегментация строк/областей и определение порядка чтения:Kraken реализует традиционную сегментацию зон/строк и нейронную сегментацию базовой линии с явной поддержкой различных письменносте й и направлений (слева направо/справа налево/вертикально).
Модели распознавания. Классическая рабочая лошадка с открытым исходным кодом Tesseract (с открытым исходным кодом от Google, с корнями в HP) эволюционировала от классификатора символов до распознавателя последовательностей на основе LSTM и может выдавать PDF с возможностью поиска, выходные данные, дружественные к hOCR/ALTO, и многое другое из командной строки. Современные распознаватели полагаются на моделирование последовательностей без предварительно сегментированных символов. Коннективистская временная классификация (CTC) остается основополагающей, изучая выравнивания между последовательностями входных признаков и строками выходных меток; она широко используется в конвейерах для распознавания рукописного ввода и текста на сцене.
В последние несколько лет трансформеры изменили OCR. TrOCR использует кодировщик Vision Transformer и декодер Text Transformer, обученный на больших синтетических корпусах, а затем доработанный на реальных данных, с высокой производительностью на тестах печатного, рукописного и сценического текста (см. также документацию Hugging Face). Параллельно некоторые системы обходят OCR для последующего понимания: Donut (Document Understanding Transformer) — это кодировщик-декодер без OCR, который напрямую выводит структурированные ответы (например, JSON «ключ-значение») из изображений документов (репозиторий, карточка модели), избегая накопления ошибок, когда отдельный шаг OCR передает данные в систему извлечения информации.
Движки и библиотеки
Если вам нужно готовое решение для чтения текста на многих языках, EasyOCR предлагает простой API с более чем 80 языковыми моделями, возвращающий рамки, текст и достоверность — удобно для прототипов и нелатинских письменностей. Для исторических документов Kraken отличается сегментацией базовой линии и порядком чтения с учетом письменности; для гибкого обучения на уровне строк Calamari основан на наследии Ocropy (Ocropy) с распознавателями (multi-)LSTM+CTC и CLI для тонкой настройки пользовательских моделей.
Наборы данных и тесты
Обобщение зависит от данных. Для рукописного ввода база данных рукописного ввода IAM предоставляет разнообразные по авторам английские предложения для обучения и оценки; это давний эталонный набор для распознавания строк и слов. Для текста на сцене COCO-Text наложил обширные аннотации на MS-COCO с метками для печатного/рукописного, разборчивого/неразборчивого, письменности и полных транскрипций (см. также оригинальную страницу проекта). Эта область также в значительной степени зависит от синтетического предварительного обучения: SynthText in the Wild визуализирует текст на фотографиях с реалистичной геометрией и освещением, предоставляя огромные объемы данных для предварительного обучения детекторов и распознавателей (ссылка на код и данные).
Соревнования под эгидой ICDAR’s Robust Reading сохраняют обоснованность оценки. Последние задачи подчеркивают сквозное обнаружение/чтение и включают связывание слов во фразы, с официальным кодом, сообщающим точность/полноту/F-меру, пересечение над объединением (IoU) и метрики расстояния редактирования на уровне символов, что отражает то, что должны отслеживать практики.
Форматы вывода и последующее использование
OCR редко заканчивается простым текстом. Архивы и цифровые библиотеки предпочитают ALTO XML , потому что он кодирует физический макет (блоки/строки/слова с координатами) вместе с содержимым, и он хорошо сочетается с упаковкой METS. Микроформат hOCR , напротив, встраивает ту же идею в HTML/CSS, используя классы, такие как ocr_line и ocrx_word, что упрощает отображение, редактирование и преобразование с помощью веб-инструментов. Tesseract предоставляет оба варианта, например, генерируя hOCR или PDF с возможностью поиска прямо из командной строки (руководство по выводу PDF); оболочки Python, такие как pytesseract , добавляют удобства. Существуют преобразователи для перевода между hOCR и ALTO, когда в репозиториях есть фиксированные стандарты приема — см. этот тщательно подобранный список инструментов для формата файлов OCR.
Практическое руководство
- Начните с данных и чистоты. Если ваши изображения — это фотографии с телефона или сканы смешанного качества, вложитесь в пороговую обработку (адаптивную и Оцу) и выравнивание (Хафа) перед любой настройкой модели. Вы часто получите больше от надежного рецепта предварительной обработки, чем от замены распознавателей.
- Выберите правильный детектор. Для отсканированных страниц с обычными столбцами может быть достаточно сегментатора страниц (зоны → строки); для естественных изображений детекторы одного прохода, такие как EAST , являются сильными базовыми линиями и подключаются ко многим наборам инструментов (пример OpenCV).
- Выберите распознаватель, который соответствует вашему тексту. Для печатной латиницы Tesseract (LSTM/OEM) надежен и быстр; для нескольких письменностей или быстрых прототипов EasyOCR продуктивен; для рукописного ввода или исторических шрифтов рассмотрите Kraken или Calamari и планируйте тонкую настройку. Если вам нужна тесная связь с пониманием документов (извлечение пар «ключ-значение», VQA), оцените TrOCR (OCR) по сравнению с Donut (без OCR) на вашей схеме — Donut может устранить целый шаг интеграции.
- Измеряйте то, что имеет значение. Для сквозных систем сообщайте об обнаружении F-мера и распознавании CER/WER (оба основаны на расстоянии редактирования Левенштейна ; см. CTC); для задач с интенсивным использованием макета отслеживайте IoU/плотность и нормализованное расстояние редактирования на уровне символов, как в наборах для оценки ICDAR RRC .
- Экспортируйте богатые выходные данные. Предпочитайте hOCR /ALTO (или оба), чтобы сохранить координаты и порядок чтения — это жизненно важно для выделения результатов поиска, извлечения таблиц/полей и происхождения. CLI Tesseract и pytesseract делают это одной строкой.
Взгляд в будущее
Самая сильная тенденция — это конвергенция: обнаружение, распознавание, языковое моделирование и даже декодирование для конкретных задач объединяются в единые стеки трансформеров. Предварительное обучение на больших синтетических корпусах остается мультипликатором силы. Модели без OCR будут агрессивно конкурировать везде, где целью являются структурированные выходные данные, а не дословные транскрипции. Ожидайте также гибридных развертываний: легкий детектор плюс распознаватель в стиле TrOCR для длинного текста и модель в стиле Donut для форм и квитанций.
Дополнительная литература и инструменты
Tesseract (GitHub) · Документация Tesseract · Спецификация hOCR · Фон ALTO · Детектор EAST · Обнаружение текста OpenCV · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · Рукописный ввод IAM · Инструменты формата файлов OCR · EasyOCR
Часто задаваемые вопросы
Что такое OCR?
Оптическое распознавание символов (OCR) - это технология, используемая для преобразования различных типов документов, таких как отсканированные бумажные документы, PDF-файлы или изображения, снятые цифровой камерой, в данные, которые можно редактировать и искать.
Как работает OCR?
OCR сканирует входное изображение или документ, разбирает изображение на отдельные символы, а затем сравнивает каждый символ с базой данных форм символов, используя распознавание по образцу или распознавание по признакам.
Какие практические применения у OCR?
OCR используется в различных отраслях и приложениях, включая цифровизацию печатных документов, использование услуг перевода текста в речь, автоматизацию процесса ввода данных и помощь людям с нарушениями зрения в более качественном взаимодействии с текстом.
OCR всегда на 100% точен?
Несмотря на значительные усовершенствования технологии OCR, она не абсолютно надежна. Точность может варьироваться в зависимости от качества исходного документа и конкретных характеристик используемого ПО OCR.
Может ли OCR распознавать рукописный текст?
Хотя OCR в основном предназначен для распознавания печатного текста, некоторые продвинутые системы OCR также могут распознавать чистописание. Однако точность распознавания рукописного текста обычно ниже из-за вариативности индивидуальных стилей письма.
Может ли OCR обрабатывать несколько языков?
Да, многие программы OCR могут распознавать множество языков. Однако следует убедиться, что используемое вами программное обеспечение поддерживает конкретный язык.
В чем разница между OCR и ICR?
OCR - это аббревиатура от Optical Character Recognition (оптическое распознавание символов), которое используется для распознавания печатного текста, в то время как ICR, или Intelligent Character Recognition (интеллектуальное распознавание символов), это более продвинутая технология, которая используется для распознавания рукописного т екста.
Может ли OCR обрабатывать все шрифты и размеры текста?
OCR наиболее эффективен при обработке четких, легко читаемых шрифтов и стандартных размеров текста. Хотя он способен распознавать различные шрифты и размеры, его точность может снизиться при обработке нестандартных шрифтов или очень мелкого текста.
Каковы ограничения технологии OCR?
У OCR может быть проблемы при обработке документов с низким разрешением, сложных шрифтов, текста с плохим качеством печати, рукописного текста или документов, где текст плохо сочетается с фоном. Кроме того, хотя OCR может распознавать многие языки, он может не покрывать все языки идеально.
Может ли OCR сканировать цветной текст или цветной фон?
Да, OCR может сканировать цветной текст и фоны, хотя он наиболее эффективен при работе с комбинациями цветов с высоким контрастом, такими как черный текст на белом фоне. Если контраст между цветом текста и фона недостаточен, точность может снизиться.
Что такое формат ICON?
Значок Microsoft
Формат изображений ICO, обычно известный как ICO, — это формат файлов, который обычно используется для значков в Microsoft Windows. Файлы ICO содержат одно или несколько небольших изображений с различными размерами и глубиной цвета, чтобы их можно было соответствующим образом масштабировать. В Windows значки используются для представления приложения, файла или папки и являются неотъемлемой частью пользовательского интерфейса. Формат ICO универсален, что позволяет использовать изображения размером от 16x16 пикселей до 256x256 пикселей и даже больше с определенными обходными путями. Формат поддерживает 24-битные цветные изображения и 8-битную прозрачность, которую часто называют альфа-прозрачностью.
Формат ICO уникален тем, что он может содержать несколько изображений в одном файле. Это особенно полезно для значков, которые необходимо отображать в разных размерах и разрешениях. Например, типичный файл ICO может содержать один и тот же значок, отображаемый в размерах 16x16, 32x32, 48x48 и 256x256 пикселей. Это позволяет операционной системе выбирать оптимальный размер для данного контекста, например, маленький значок в списке файлов или более крупный значок, когда пользователь изменяет параметры просмотра, чтобы отображать большие значки.
Структура файла ICO относительно проста. Он начинается с заголовка, за которым следует каталог, а затем сами данные изображения. Заголовок содержит зарезервированное 2-байтовое поле, которое всегда устанавливается в ноль, 2-байтовое поле типа, которое указывает тип ресурса (1 для значков), и 2-байтовое поле количества, которое указывает, сколько изображений содержится в файле. За заголовком следует каталог, который представляет собой массив записей, по одной для каждого изображения в файле. Каждая запись каталога содержит несколько полей, включая ширину, высоту, количеств о цветов и размер данных изображения.
Поля ширины и высоты в записи каталога являются однобайтовыми, с максимальным значением 255. Однако на практике максимальные размеры изображения ICO составляют 256x256 пикселей. Когда изображение имеет ширину или высоту 256 пикселей, соответствующее поле устанавливается в 0. Поле количества цветов указывает количество цветов в палитре изображения, при этом значение 0 означает, что изображение не использует палитру (т. е. это 24-битное или 32-битное изображение). Поле размера — это 4-байтовое значение, которое указывает размер данных изображения в байтах, а поле смещения — это 4-байтовое значение, которое указывает местоположение данных изображения в файле.
Данные изображения в файле ICO могут храниться в одном из нескольких форматов. Для более мелких значков с размерами менее 64x64 пикселей данные изображения обычно хранятся в формате растрового изображения с независимым от устройства (DIB), который также используется в файлах BMP. Этот формат включает структуру BITMAPINFOHEADER, за которой следует цветовая палитра (если изображение ее использует), а затем данные пикселей. Для боле е крупных значков данные изображения часто хранятся в формате PNG, который обеспечивает лучшее сжатие и поддерживает альфа-прозрачность.
Структура BITMAPINFOHEADER содержит информацию о растровом изображении, включая его размер, ширину, высоту, плоскости, количество битов, сжатие, размер изображения, горизонтальное и вертикальное разрешение, количество цветов и важное количество цветов. Поле количества битов указывает количество битов на пиксель, которое может быть равно 1, 4, 8, 24 или 32. Количество битов 32 указывает, что изображение включает альфа-канал для прозрачности. Поле сжатия обычно устанавливается в 0, что указывает на отсутствие сжатия для изображений в формате BMP в файле ICO.
Прозрачность в файлах ICO обрабатывается двумя способами. Для изображений без альфа-канала используется маска растрового изображения. Это 1-битное на пиксель изображение, которое указывает, какие пиксели прозрачные, а какие непрозрачные. Маска растрового изображения хранится сразу после цветного растрового изображения в файле. Для изображений с альфа-каналом информация о прозрачности хранится в самом альфа-канале, который является частью 32-битной глубины цвета. Это позволяет использовать различные уровни прозрачности, от полностью непрозрачного до полностью прозрачного, и особенно полезно для создания плавных краев и падающих теней.
Формат ICO со временем эволюционировал. Первоначально в более старых версиях Windows значки были ограничены небольшой палитрой цветов и не поддерживали альфа-прозрачность. По мере того как графические пользовательские интерфейсы становились более сложными, стала очевидной необходимость в значках более высокого качества с плавными краями и возможностью смешивания с различными фонами. С появлением Windows XP компания Microsoft обновила формат ICO для поддержки 32-битных изображений с 8-битной альфа-прозрачностью, что позволило создавать гораздо более детализированные и визуально привлекательные значки.
Несмотря на свое название, формат ICO не ограничивается Microsoft Windows. Он распознается различными другими операционными системами и может использоваться в веб-браузерах в качестве фавикона, который представляет собой небольшой значок, отображаемый рядом с названием веб-сайта на вкладке браузера. Фавиконы обычно имеют размер 16x16 или 32x32 пикселя и хранятся в формате ICO, чтобы обеспечить совместимость с разными браузерами и платформами. Однако в современной веб-разработке для фавиконов также используются другие форматы, такие как PNG и GIF.
Создание файлов ICO требует специализированного программного обеспечения, которое может обрабатывать тонкости формата, такие как несколько размеров изображений и глубина цвета в одном файле. Существует множество редакторов и конвертеров значков, которые могут создавать файлы ICO с нуля или преобразовывать существующие изображения в формат ICO. Некоторые программы для редактирования изображений, такие как Adobe Photoshop, также могут сохранять изображения в формате ICO с помощью дополнительных плагинов.
При разработке значков для формата ICO важно учитывать контекст, в котором они будут использоваться. Значки должны быть разборчивыми и узнаваемыми при небольших размерах, и они должны соответствовать единому стилю, соответствующему приложению или бренду, который они представляют. Также важно тестировать значки на разных фонах и в разных размерах, чтобы убедиться, что они сохраняют свою четкость и визуальное воздействие.
С точки зрения размера файла файлы ICO могут сильно различаться в зависимости от количества и размера содержащихся в них изображений. Поскольку они могут включать несколько размеров и глубину цвета, файлы ICO могут стать довольно большими, особенно когда они включают изображения с высоким разрешением. Однако использование сжатия PNG для более крупных изображений помогает смягчить эту проблему, уменьшая размер файла без ущерба для качества изображения.
Возможность формата ICO содержать несколько изображений разных размеров и глубины цвета в одном файле делает его надежным и гибким форматом для значков. Это позволяет эффективно использовать ресурсы, поскольку операционная система может загружать подходящий размер изображения и глубину цвета для данного контекста отображения без необходимости использования нескольких отдельных файлов. Эта эффективность особенно важна в средах, где память и место для хранения ограничены.
В заключение, формат изображений ICO — это специализированный формат файлов, предназначенный для хранения значков, используемых в Microsoft Windows. Его способность содержать несколько изображений разных размеров и глубины цвета делает его идеальным для значков, которые необходимо отображать в разных контекстах. Формат поддерживает прозрачность с помощью масок растровых изображений или альфа-каналов, что позволяет создавать значки с плавными краями и сложными визуальными эффектами. Хотя формат в значительной степени ассоциируется с Windows, он также нашел свое место в Интернете как стандарт для фавиконов. По мере того как пользовательские интерфейсы продолжают развиваться, формат ICO остается ключевым элементом в создании визуально целостной и удобной для пользователя среды.
Поддерживаемые форматы
AAI.aai
Изображение AAI Dune
AI.ai
Adobe Illustrator CS2
AVIF.avif
Формат файла изображения AV1
BAYER.bayer
Сырое изображение Bayer
BMP.bmp
Изображение битовой карты Microsoft Windows
CIN.cin
Файл изображения Cineon
CLIP.clip
Маска изображения Clip
CMYK.cmyk
Сырые голубые, пурпурные, желтые и черные образцы
CUR.cur
Значок Microsoft
DCX.dcx
Многостраничный рисунок ZSoft IBM PC
DDS.dds
Изображение Microsoft DirectDraw Surface
DPX.dpx
Изображение SMTPE 268M-2003 (DPX 2.0)
DXT1.dxt1
Изображение Microsoft DirectDraw Surface
EPDF.epdf
Зашифрованный формат портативного документа
EPI.epi
Формат обмена Adobe Encapsulated PostScript
EPS.eps
Adobe Encapsulated PostScript
EPSF.epsf
Adobe Encapsulated PostScript
EPSI.epsi
Формат обмена Adobe Encapsulated PostScript
EPT.ept
Зашифрованный PostScript с предварительным просмотром TIFF
EPT2.ept2
Зашифрованный PostScript уровня II с предварительным просмотром TIFF
EXR.exr
Изображение с высоким динамическим диапазоном (HDR)
FF.ff
Farbfeld
FITS.fits
Гибкая система передачи изображений
GIF.gif
Формат обмена графическими данными CompuServe
HDR.hdr
Изображение с высоким динамическим диапазоном (HDR)
HEIC.heic
Высокоэффективный контейнер изображений
HRZ.hrz
Медленное сканирование телевизионного сигнала
ICO.ico
Значок Microsoft
ICON.icon
Значок Microsoft
J2C.j2c
Кодовый поток JPEG-2000
J2K.j2k
Кодовый поток JPEG-2000
JNG.jng
Графика JPEG Network
JP2.jp2
Синтаксис файла JPEG-2000
JPE.jpe
Формат Joint Photographic Experts Group JFIF
JPEG.jpeg
Формат Joint Photographic Experts Group JFIF
JPG.jpg
Форма т Joint Photographic Experts Group JFIF
JPM.jpm
Синтаксис файла JPEG-2000
JPS.jps
Формат Joint Photographic Experts Group JPS
JPT.jpt
Синтаксис файла JPEG-2000
JXL.jxl
Изображение JPEG XL
MAP.map
База данных изображений с множественным разрешением (MrSID)
MAT.mat
Формат изображения MATLAB уровня 5
PAL.pal
Палмовый пиксмап
PALM.palm
Палмовый пиксмап
PAM.pam
Общий 2-мерный формат битмапа
PBM.pbm
Портативный формат битмапа (черно-белый)
PCD.pcd
Фото CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
Формат просмотра базы данных Palm
PDF.pdf
Портативный формат документа
PDFA.pdfa
Портативный формат архива документов
PFM.pfm
Портативный формат с плавающей запятой
PGM.pgm
Портативный формат серого битмапа (оттенки серого)
PGX.pgx
Формат JPEG 2000 без сжатия
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
Совместная гру ппа экспертов по фотографии формат JFIF
PNG.png
Портативная графика сети
PNG00.png00
Наследование PNG бит-глубины, типа цвета от исходного изображения
PNG24.png24
Непрозрачный или бинарно прозрачный 24-битный RGB (zlib 1.2.11)
PNG32.png32
Непрозрачный или бинарно прозрачный 32-битный RGBA
PNG48.png48
Непрозрачный или бинарно прозрачный 48-битный RGB
PNG64.png64
Непрозрачный или бинарно прозрачный 64-битный RGBA
PNG8.png8
Непрозрачный или бинарно прозрачный 8-битный индексный
PNM.pnm
Портативный любой битмап
PPM.ppm
Портативный формат пиксмапа (цвет)
PS.ps
Файл Adobe PostScript
PSB.psb
Формат большого документа Adobe
PSD.psd
Битмап Adobe Photoshop
RGB.rgb
Сырые образцы красного, зеленого и синего
RGBA.rgba
Сырые образцы красного, зеленого, синего и альфа
RGBO.rgbo
Сырые образцы красного, зеленого, синего и непрозрачности
SIX.six
Формат графики DEC SIXEL
SUN.sun
Файл Sun Rasterfile
SVG.svg
Масштабируемая векторная графика
TIFF.tiff
Формат файла изображения с тегами
VDA.vda
Из ображение Truevision Targa
VIPS.vips
Изображение VIPS
WBMP.wbmp
Беспроводное изображение (уровень 0)
WEBP.webp
Формат изображения WebP
YUV.yuv
CCIR 601 4:1:1 или 4:2:2
Часто задаваемые вопросы
Как это работает?
Этот конвертер полностью работает в вашем браузере. Когда вы выбираете файл, он загружается в память и преобразуется в выбранный формат. Затем вы можете скачать преобразованный файл.
Сколько времени занимает преобразование файла?
Преобразования начинаются мгновенно, и большинство файлов преобразуются за считанные секунды. Более крупные файлы могут занимать больше времени.
Что происходит с моими файлами?
Ваши файлы никогда не загружаются на наши серверы. Они преобразуются в вашем браузере, а затем скачиваются. Мы никогда не видим ваши файлы.
Какие типы файлов я могу преобразовать?
Мы поддерживаем преобразование между всеми форматами изображений, включая JPEG, PNG, GIF, WebP, SVG, BMP, TIFF и другие.
Сколько это стоит?
Этот конвертер полностью бесплатен и всегда будет бесплатным. Поскольку он работает в вашем браузere, нам не нужно платить за серверы, поэтому мы не взимаем плату с вас.
Могу ли я преобразовать несколько файлов одновременно?
Да! Вы можете преобразовать сколько угодно фа йлов одновременно. Просто выберите несколько файлов при их добавлении.