ดู JPMs
ลากและวาง หรือ คลิก เพื่อเลือก
ส่วนตัวและปลอดภัย
ทุกอย่างเกิดขึ้นในเบราว์เซอร์ของคุณ ไฟล์ของคุณไม่เคยสัมผัสเซิร์ฟเวอร์ของเรา
เร็วสุดขีด
ไม่มีการอัปโหลด ไม่ต้องรอ แปลงทันทีที่คุณวางไฟล์
ฟรีจริงๆ
ไม่ต้องใช้บัญชี ไม่มีค ่าใช้จ่ายแอบแฝง ไม่มีลูกเล่นขนาดไฟล์
รูปแบบ JPM คืออะไร?
รูปแบบไฟล์ JPEG-2000
รูปแบบภาพ JPEG (Joint Photographic Experts Group) ซึ่งเป็นที่รู้จักกันทั่วไปในชื่อ JPG เป็นวิธีการบีบอัดแบบสูญเสียที่ใช้กันอย่างแพร่หลายสำหรับภาพดิจิทัล โดยเฉพาะอย่างยิ่งสำหรับภาพที่ถ่ายด้วยกล้องดิจิทัล ระดับการบีบอัดสามารถปรับได้ ซึ่งช่วยให้สามารถแลกเปลี่ยนระหว่างขนาดที่จัดเก็บและคุณภาพของภาพได้ JPEG มักจะบีบอัดได้ 10:1 โดยแทบไม่สูญเสียคุณภาพของภาพ
การบีบอัด JPEG ใช้ในรูปแบบไฟล์ภาพจำนวนมาก JPEG/Exif เป็นรูปแบบภาพที่ใช้กันมากที่สุดโดยกล้องดิจิทัลและอุปกรณ์บันทึกภาพถ่ายอื่นๆ พร้อมกับ JPEG/JFIF ซึ่งเป็นรูปแบบที่ใช้กันมากที่สุดสำหรับการจัดเก็บและส่งภาพถ่ายบน World Wide Web ความแตกต่างของรูปแบบเหล่านี้มักจะ ไม่แตกต่างกัน และเรียกง่ายๆ ว่า JPEG
รูปแบบ JPEG ประกอบด้วยมาตรฐานต่างๆ มากมาย รวมถึง JPEG/Exif, JPEG/JFIF และ JPEG 2000 ซึ่งเป็นมาตรฐานใหม่กว่าที่ให้ประสิทธิภาพการบีบอัดที่ดีกว่าด้วยความซับซ้อนในการคำนวณที่สูงกว่า มาตรฐาน JPEG มีความซับซ้อน โดยมีส่วนและโปรไฟล์ต่างๆ แต่มาตรฐาน JPEG ที่ใช้กันมากที่สุดคือ JPEG พื้นฐาน ซึ่งเป็นสิ่งที่คนส่วนใหญ่หมายถึงเมื่อพูดถึงภาพ 'JPEG'
อัลกอริทึมการบีบอัด JPEG นั้นเป็นเทคนิคการบีบอัดที่ใช้การแปลงโคไซน์แบบไม่ต่อเนื่อง (DCT) ที่แกนกลาง DCT เป็นการแปลงที่เกี่ยวข้องกับฟูริเยร์ ซึ่งคล้ายกับการแปลงฟูริเยร์แบบไม่ต่อเนื่อง (DFT) แต่ใช้เฉพาะฟังก์ชันโคไซน์ DCT ใช้เพราะมีคุณสมบัติในการรวมสัญญาณส่วนใหญ่ในบริเวณความถี่ต่ำของสเปกตรัม ซึ่งสัมพันธ์กับคุณสมบัติของภาพธรรมชาติได้ดี
กระบวนการบีบอัด JPEG เกี่ยวข้องกับหลายขั้นตอน ในขั้นต้น ภาพจะถูกแปลงจากพื้นที่สีเดิม (โดยปกติคือ RGB) ไปเป็นพื้นที่สีอื่นที่เรียกว่า YCbCr พื้นที่สี YCbCr แยกภาพออกเป็นส่วนประกอบความสว่าง (Y) ซึ่งแสดงระดับความสว่าง และส่วนประกอบความอิ่มตัวของสีสองส่วน (Cb และ Cr) ซึ่งแสดงข้อมูลสี การแยกนี้เป็นประโยชน์เพราะดวงตาของมนุษย์มีความไวต่อการเปลี่ยนแปลงความสว่างมากกว่าสี ซึ่งช่วยให้สามารถบีบอัดส่วนประกอบความอิ่มตัวของสีได้มากขึ้นโดยไม่ส่งผลกระทบต่อคุณภาพของภาพที่รับรู้ได้อย่างมีนัยสำคัญ
หลังจากการแปลงพื้นที่สีแล้ว ภาพจะถูกแบ่งออกเป็นบล็อก โดยปกติจะมีขนาด 8x8 พิกเซล จากนั้นแต่ละบล็อกจะถูกประมวลแยกกัน สำหรับแต่ละบล็อก จะใช้ DCT ซึ่งแปลงข้อมูลโดเมนเชิงพื้นที่เป็นข้อมูลโดเมนความถี่ ขั้นตอนนี้มีความสำคัญเนื่องจากทำให้ข้อมูลภาพเหมาะสำหรับการบีบอัดมากขึ้น เนื่องจากภาพธรรมชาติมีแนวโน้มที่จะมีส่วนประกอบความถี่ต่ำที่มีนัยสำคัญมากกว่าส่วนประกอบความถี่สูง
เมื่อใช้ DCT แล้ว ค่าสัมประสิทธิ์ที่ได้จะถูกทำให้เป็นปริมาณ การทำให้เป็นปริมาณคือกระบวนการแมปชุดค่าอินพุตขนาดใหญ่ไปยังชุดที่เล็กลง ซึ่งจะช่วยลดจำนวนบิตที่จำเป็นในการจัดเก็บได้อย่างมีประสิทธิภาพ นี่คือแหล่งที่มาหลักของการสูญเสียในการบีบอัด JPEG ขั้นตอนการทำให้เป็นปริมาณจะถูกควบคุมโดยตารางการทำให้เป็นปริมาณ ซึ่งกำหนดว่าจะใช้การบีบอัดกับค่าสัมประสิทธิ์ DCT แต่ละตัวมากน้อยเพียงใด โดยการปรับตารางการทำให้เป็นปริมาณ ผู้ใช้สามารถแลกเปลี่ยนระหว่างคุณภาพของภาพและขนาดไฟล์ได้
หลังจากการทำให้เป็นปริมาณ ค่าสัมประสิทธิ์จะถูกทำให้เป็นเส้นตรงโดยการสแกนแบบซิกแซก ซึ่งจะจัดเรียงตามความถี่ที่เพิ่มขึ้น ขั้นตอนนี้มีความสำคัญเพราะจะ จัดกลุ่มค่าสัมประสิทธิ์ความถี่ต่ำที่มีแนวโน้มว่าจะมีนัยสำคัญ และค่าสัมประสิทธิ์ความถี่สูงที่มีแนวโน้มว่าจะเป็นศูนย์หรือใกล้ศูนย์หลังจากการทำให้เป็นปริมาณ การจัดลำดับนี้ช่วยให้ขั้นตอนถัดไปง่ายขึ้น ซึ่งก็คือการเข้ารหัสเอนโทรปี
การเข้ารหัสเอนโทรปีเป็นวิธีการบีบอัดแบบไม่สูญเสียที่ใช้กับค่าสัมประสิทธิ์ DCT ที่ทำให้เป็นปริมาณ รูปแบบการเข้ารหัสเอนโทรปีที่ใช้กันมากที่สุดใน JPEG คือการเข้ารหัส Huffman แม้ว่าการเข้ารหัสเลขคณิตจะได้รับการสนับสนุนโดยมาตรฐาน การเข้ารหัส Huffman ทำงานโดยกำหนดรหัสที่สั้นกว่าให้กับองค์ประกอบที่ใช้บ่อยกว่า และรหัสที่ยาวกว่าให้กับองค์ประกอบที่ใช้ไม่บ่อยนัก เนื่องจากภาพธรรมชาติมีแนวโน้มที่จะมีค่าสัมประสิทธิ์เป็นศูนย์หรือใกล้ศูนย์จำนวนมากหลังจากการทำให้เป็นปริมาณ โดยเฉพาะในบริเวณความถี่สูง การเข้ารหัส Huffman จึงสามารถลดขนาดของข้อมูลที่บีบอัดได้อย่างมาก
ขั้นตอนสุดท้ายในกระบวนการบีบอัด JPEG คือการจัดเก็บข้อมูลที่บีบอัดในรูปแบบไฟล์ รูปแบบที่ใช้กันมากที่สุดคือ JPEG File Interchange Format (JFIF) ซึ่งกำหนดวิธีแสดงข้อมูลที่บีบอัดและเมตาดาต้าที่เกี่ยวข้อง เช่น ตารางการทำให้เป็นปริมาณและตารางรหัส Huffman ในไฟล์ที่สามารถถอดรหัสได้โดยซอฟต์แวร์ที่หลากหลาย อีกรูปแบบหนึ่งที่ใช้กันทั่วไปคือ Exchangeable image file format (Exif) ซึ่งใช้โดยกล้องดิจิทัลและมีเมตาดาต้า เช่น การตั้งค่ากล้องและข้อมูลฉาก
ไฟล์ JPEG ยังมีมาร์กเกอร์ ซึ่งเป็นลำดับรหัสที่กำหนดพารามิเตอร์หรือการดำเนินการบางอย่างในไฟล์ มาร์กเกอร์เหล่านี้อาจบ่งชี้จุดเริ่มต้นของภาพ จุดสิ้นสุดของภาพ กำหนดตารางการทำให้เป็นปริมาณ ระบุตารางรหัส Huffman และอื่นๆ มาร์กเกอร์มีความจำเป็นสำหรับการถอดรหัสภ าพ JPEG อย่างถูกต้อง เนื่องจากให้ข้อมูลที่จำเป็นในการสร้างภาพใหม่จากข้อมูลที่บีบอัด
หนึ่งในคุณสมบัติหลักของ JPEG คือการรองรับการเข้ารหัสแบบก้าวหน้า ใน JPEG แบบก้าวหน้า ภาพจะถูกเข้ารหัสในหลายรอบ โดยแต่ละรอบจะปรับปรุงคุณภาพของภาพ สิ่งนี้ช่วยให้สามารถแสดงภาพที่มีคุณภาพต่ำได้ในขณะที่ไฟล์ยังคงดาวน์โหลดอยู่ ซึ่งอาจเป็นประโยชน์อย่างยิ่งสำหรับภาพบนเว็บ ไฟล์ JPEG แบบก้าวหน้าโดยทั่วไปจะมีขนาดใหญ่กว่าไฟล์ JPEG พื้นฐาน แต่ความแตกต่างในคุณภาพระหว่างการโหลดสามารถปรับปรุงประสบการณ์ของผู้ใช้ได้
แม้จะมีการใช้งานอย่างแพร่หลาย แต่ JPEG ก็มีข้อจำกัดบางประการ ลักษณะการสูญเสียของการบีบอัดอาจทำให้เกิดสิ่งประดิษฐ์ เช่น การบล็อก ซึ่งภาพอาจแสดงสี่เหลี่ยมที่มองเห็นได้ และ 'การสั่น' ซึ่งขอบอาจมาพร้อมกับการสั่นที่ไม่พึงประสงค์ สิ่งป ระดิษฐ์เหล่านี้จะสังเกตเห็นได้ชัดเจนยิ่งขึ้นที่ระดับการบีบอัดที่สูงขึ้น นอกจากนี้ JPEG ยังไม่เหมาะสำหรับภาพที่มีขอบคมหรือข้อความที่มีคอนทราสต์สูง เนื่องจากอัลกอริทึมการบีบอัดสามารถทำให้ขอบเบลอและลดความสามารถในการอ่านได้
เพื่อแก้ไขข้อจำกัดบางประการของมาตรฐาน JPEG เดิม จึงได้มีการพัฒนา JPEG 2000 JPEG 2000 มีการปรับปรุงหลายประการเหนือกว่า JPEG พื้นฐาน รวมถึงประสิทธิภาพการบีบอัดที่ดีกว่า การรองรับการบีบอัดแบบไม่สูญเสีย และความสามารถในการจัดการกับภาพประเภทต่างๆ ได้อย่างมีประสิทธิภาพมากขึ้น อย่างไรก็ตาม JPEG 2000 ยังไม่ได้รับการนำไปใช้อย่างแพร่หลายเมื่อเทียบกับมาตรฐาน JPEG เดิม ซึ่งส่วนใหญ่เป็นเพราะความซับซ้อนในการคำนวณที่เพิ่มขึ้นและการขาดการสนับสนุนในซอฟต์แวร์และเว็บเบราว์เซอร์บางตัว
สรุปแล้ว รูปแบบภาพ JPEG เป็นวิธีการที่ซับซ้อนแต่
รูปแบบที่รองรับ
AAI.aai
ภาพ AAI Dune
AI.ai
Adobe Illustrator CS2
AVIF.avif
รูปแบบไฟล์ภาพ AV1
BAYER.bayer
ภาพ Bayer ดิบ
BMP.bmp
ภาพ bitmap ของ Microsoft Windows
CIN.cin
ไฟล์ภาพ Cineon
CLIP.clip
Image Clip Mask
CMYK.cmyk
ตัวอย่างสีฟ้า, สีแม่จัน, สีเหลือง, และสีดำดิบ
CUR.cur
ไอคอนของ Microsoft
DCX.dcx
ZSoft IBM PC multi-page Paintbrush
DDS.dds
Microsoft DirectDraw Surface
DPX.dpx
ภาพ SMTPE 268M-2003 (DPX 2.0)
DXT1.dxt1
Microsoft DirectDraw Surface
EPDF.epdf
รูปแบบเอกสารพกพาที่มีการหุ้มห่อ
EPI.epi
รูปแบบการแลกเปลี่ยน PostScript ที่มีการหุ้มห่อของ Adobe
EPS.eps
Adobe Encapsulated PostScript
EPSF.epsf
Adobe Encapsulated PostScript
EPSI.epsi
รูปแบบการแลกเปลี่ยน PostScript ที่มีการหุ้มห่อของ Adobe
EPT.ept
PostScript ที่มีการหุ้มห่อพร้อมตัวอย่าง TIFF
EPT2.ept2
ระดับ PostScript ที่มีการหุ้มห่อ II พร้อมตัวอย่าง TIFF
EXR.exr
ภาพที่มีช่วงไดนามิกสูง (HDR)
FF.ff
Farbfeld
FITS.fits
ระบบการขนส่งภาพที่ยืดหยุ่น
GIF.gif
รูปแบบการแลกเปลี่ยนกราฟิกของ CompuServe
HDR.hdr
ภาพที่มีช่วงไดนามิกสูง
HEIC.heic
คอนเทนเนอร์ภาพประสิทธิภาพสูง
HRZ.hrz
Slow Scan TeleVision
ICO.ico
ไอคอนของ Microsoft
ICON.icon
ไอคอนของ Microsoft
J2C.j2c
codestream JPEG-2000
J2K.j2k
codestream JPEG-2000
JNG.jng
กราฟิกเครือข่าย JPEG
JP2.jp2
รูปแบบไฟล์ JPEG-2000
JPE.jpe
รูปแบบ JFIF ของกลุ่มผู้เชี่ยวชาญด้านภาพร่วม
JPEG.jpeg
รูปแบบ JFIF ของกลุ่มผู้เชี่ยวชาญด้านภาพร่วม
JPG.jpg
รูปแบบ JFIF ของกลุ่มผู้เชี่ยวชาญด้านภาพร่วม
JPM.jpm
รูปแบบไฟล์ JPEG-2000
JPS.jps
รูปแบบ JPS ของกลุ่มผู้เชี่ยวชาญด้านภาพร่วม
JPT.jpt
รูปแบบไฟล์ JPEG-2000
JXL.jxl
ภาพ JPEG XL
MAP.map
ฐานข้อมูลภาพที่ไม่มีรอยต่อและมีความละเอียดหลายระดับ (MrSID)
MAT.mat
รูปแบบภาพ MATLAB level 5
PAL.pal
พิกซ์แมป Palm
PALM.palm
พิกซ์แมป Palm
PAM.pam
รูปแบบบิตแมป 2 มิติทั่วไป
PBM.pbm
รูปแบบบิตแมปพกพา (ขาวและดำ)
PCD.pcd
Photo CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
รูปแบบ ImageViewer ฐานข้อมูล Palm
PDF.pdf
รูป แบบเอกสารพกพา
PDFA.pdfa
รูปแบบเอกสารเก็บถาวร
PFM.pfm
รูปแบบลอยพกพา
PGM.pgm
รูปแบบกรายแมปพกพา (สเกลเทา)
PGX.pgx
รูปแบบไม่บีบอัด JPEG 2000
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
รูปแบบ JFIF ของกลุ่มผู้เชี่ยวชาญด้านภาพถ่ายร่วม
PNG.png
กราฟิกเครือข่ายพกพา
PNG00.png00
PNG สืบทอดความลึกบิต, ประเภทสีจากรูปภาพเดิม
PNG24.png24
RGB 24 บิตที่ไม่โปร่งใสหรือโปร่งใสแบบไบนารี (zlib 1.2.11)
PNG32.png32
RGBA 32 บิตที่ไม่โปร่งใสหรือโปร่งใสแบบไบนารี
PNG48.png48
RGB 48 บิตที่ไม่โปร่งใสหรือโปร่งใสแบบไบนารี
PNG64.png64
RGBA 64 บิตที่ไม่โปร่งใสหรือโปร่งใสแบบไบนารี
PNG8.png8
8 บิตที่ไม่โปร่งใสหรือโปร่งใสแบบไบนารี
PNM.pnm
anymap พกพา
PPM.ppm
รูปแบบพิกซ์แมปพกพา (สี)
PS.ps
ไฟล์ Adobe PostScript
PSB.psb
รูปแบบเอกสารขนาดใหญ่ของ Adobe
PSD.psd
บิตแมป Adobe Photoshop
RGB.rgb
ตัวอย่างสีแดง, สีเขียว, และสีน้ำเงินดิบ
RGBA.rgba
ตัวอย่างสีแดง, สีเขียว, สีน้ำเงิน, และสีอัลฟาดิบ
RGBO.rgbo
ตัวอย่างสีแดง, สีเขียว, สีน้ำเงิน, และความทึบดิบ
SIX.six
รูปแบบกราฟิก DEC SIXEL
SUN.sun
Sun Rasterfile
SVG.svg
กราฟิกเวกเตอร์ขนาดยืดหยุ่น
TIFF.tiff
รูปแบบไฟล์ภาพที่มีแท็ก
VDA.vda
ภาพ Truevision Targa
VIPS.vips
ภาพ VIPS
WBMP.wbmp
ภาพ Bitmap ไร้สาย (ระดับ 0)
WEBP.webp
รูปแบบภาพ WebP
YUV.yuv
CCIR 601 4:1:1 หรือ 4:2:2
คำถามที่ถามบ่อย
ทำงานอย่างไร
ตัวแปลงนี้ทำงานอย่างสมบูรณ์ในเบราว์เซอร์ของคุณ เมื่อคุณเลือกไฟล์ ไฟล์จะถูกอ่านเข้าไปในหน่วยความจำและแปลงเป็นรูปแบบที่เลือก จากนั้นคุณสามารถดาวน์โหลดไฟล์ที่แปลงแล้วได้
การแปลงไฟล์ใช้เวลานานเท่าใด
การแปลงจะเริ่มขึ้นทันที และไฟล์ส่วนใหญ่จะถูกแปลงภายในเวลาไม่ถึงหนึ่งวินาที ไฟล์ขนาดใหญ่อาจใช้เวลานานกว่านั้น
จะเกิดอะไรขึ้นกับไฟล์ของฉัน
ไฟล์ของคุณจะไม่ถูกอัปโหลดไปยังเซิร์ฟเวอร์ของเรา ไฟล์เหล่านั้นจะถูกแปลงในเบราว์เซอร์ของคุณ จากนั้นไฟล์ที่แปลงแล้วจะถูกดาวน์โหลด เราไม่เคยเห็นไฟล์ของคุณ
ฉันสามารถแปลงไฟล์ประเภทใดได้บ้าง
เรารองรับการแปลงระหว่างรูปแบบภาพทั้งหมด รวมถึง JPEG, PNG, GIF, WebP, SVG, BMP, TIFF และอื่นๆ
ค่าใช้จ่ายเท่าไหร่
ตัวแปลงนี้ฟรีโดยสมบูรณ์ และจะฟรีตลอดไป เนื่องจากทำงานในเบราว์เซอร์ของคุณ เราจึงไม่ต้องจ่ายค่าเซิร์ฟเวอร์ ดังนั้นเราจึงไม่เรียกเก็บเงินจากคุณ
ฉันสามารถแปลงหลายไฟล์พร้อมกันได้หรือไม่
ใช่! คุณสามารถแปลงไฟล์ได้มากเท่าที่คุณต้องการในคราวเดียว เพียงเลือกหลายไฟล์เมื่อคุณเพิ่ม