Convert any image to PNG8s
Drag and drop or click to select.
Private and secure
Everything happens in your browser. Your files never touch our servers.
Blazing fast
No uploading, no waiting. Convert the moment you drop a file.
Actually free
No account required. No hidden costs. No file size tricks.
What is the PNG8 format?
Opaque or binary transparent 8-bit indexed
The Portable Network Graphics (PNG) format has established itself as a mainstay in the digital world for its ability to deliver high-quality images with lossless compression. Among its variations, PNG8 stands out for its unique blend of color efficiency and file size reduction. This detailed examination of PNG8 aims to unwrap the layers of this image format, exploring its structure, functionality, and practical applications.
At its core, PNG8 is a bit-depth variant of the PNG format that limits its color palette to 256 colors. This limitation is the key behind PNG8's ability to significantly reduce file size while still maintaining a semblance of the original image's quality. The '8' in PNG8 denotes 8 bits per pixel, which implies that each pixel in the image can be any of the 256 colors in the color palette. This palette is defined within the image file itself, allowing for a customized set of colors tailored to the specific image, enhancing the efficiency of the format.
The structure of a PNG8 file is similar to other PNG formats, following the PNG file signature and chunk-based architecture. A PNG file typically starts with an 8-byte signature, followed by a series of chunks that carry different types of data (e.g., header information, palette information, image data, and metadata). In PNG8, the PLTE (palette) chunk plays a critical role, as it stores the color palette that the image's pixels reference. This palette contains up to 256 colors, defined by RGB (red, green, blue) values.
Compression in PNG8 uses a combination of filtering and DEFLATE algorithm. Filtering is a method used to prepare the image data for compression, making it easier for the compression algorithm to reduce file size without losing information. After filtering, the DEFLATE algorithm, which combines LZ77 and Huffman coding techniques, is applied to compress the image data efficiently. This two-step process allows PNG8 images to achieve a high level of compression, making them ideal for web use where bandwidth and loading times are considerations.
Transparency in PNG8 is handled using a tRNS (transparency) chunk, which can specify a single color in the palette as fully transparent or a series of alpha values corresponding to the palette's colors, thus enabling varying degrees of transparency. This feature allows PNG8 to have simple transparency effects, making it suitable for web graphics where transparent backgrounds or soft overlays are needed. However, it's worth noting that the transparency in PNG8 cannot achieve the same level of detail as in PNG32, which supports full alpha transparency for each pixel.
The creation and optimization of PNG8 images involve a balance between color fidelity and file size. Tools and software that generate PNG8 images typically include algorithms for color quantization and dithering. Color quantization reduces the number of colors to fit within the 256-color limit, ideally preserving the image's visual integrity. Dithering helps to minimize the visual impact of color reduction by blending colors at the pixel level, creating the illusion of a larger color palette. These techniques are crucial for producing PNG8 images that are visually appealing and efficiently compressed.
Despite its advantages, PNG8 has limitations that make it less suitable for certain applications. The restricted color palette can lead to banding in gradients and loss of detail in complex images. Additionally, the simple transparency mechanism cannot accommodate scenes with soft shadows or semi-transparent objects as effectively as formats supporting full alpha transparency. Therefore, while PNG8 is excellent for simple graphics, icons, and logos with limited color ranges, it may not be the best choice for photographs and complex textures.
The adoption of PNG8 in web development and digital media creation has been driven by its compatibility, efficiency, and utility in specific contexts. Its support across all modern web browsers and image processing software makes it a reliable choice for web designers looking to optimize their web assets. For applications where the visual complexity of the content is low and the need to minimize bandwidth usage is high, PNG8 offers an optimal balance. Moreover, its transparency support adds versatility, allowing for creative layering and theming on websites without a significant increase in load times.
In summary, PNG8 remains a relevant and valuable image format within the digital imagery ecosystem, particularly for web graphics and digital media requiring efficient storage and transmission. Its design enables a trade-off between color variety and file size efficiency, making it well-suited for a range of applications with specific needs. While not devoid of limitations, PNG8's place in the spectrum of image formats is secured by its distinct advantages in terms of simplicity, compression, and broad compatibility. Understanding these aspects of PNG8 is essential for designers, developers, and digital media professionals aiming to make informed decisions about image format selection to meet their project's technical and aesthetic requirements.
Supported formats
AAI.aai
AAI Dune image
AI.ai
Adobe Illustrator CS2
AVIF.avif
AV1 Image File Format
BAYER.bayer
Raw Bayer Image
BMP.bmp
Microsoft Windows bitmap image
CIN.cin
Cineon Image File
CLIP.clip
Image Clip Mask
CMYK.cmyk
Raw cyan, magenta, yellow, and black samples
CUR.cur
Microsoft icon
DCX.dcx
ZSoft IBM PC multi-page Paintbrush
DDS.dds
Microsoft DirectDraw Surface
DPX.dpx
SMTPE 268M-2003 (DPX 2.0) image
DXT1.dxt1
Microsoft DirectDraw Surface
EPDF.epdf
Encapsulated Portable Document Format
EPI.epi
Adobe Encapsulated PostScript Interchange format
EPS.eps
Adobe Encapsulated PostScript
EPSF.epsf
Adobe Encapsulated PostScript
EPSI.epsi
Adobe Encapsulated PostScript Interchange format
EPT.ept
Encapsulated PostScript with TIFF preview
EPT2.ept2
Encapsulated PostScript Level II with TIFF preview
EXR.exr
High dynamic-range (HDR) image
FF.ff
Farbfeld
FITS.fits
Flexible Image Transport System
GIF.gif
CompuServe graphics interchange format
HDR.hdr
High Dynamic Range image
HEIC.heic
High Efficiency Image Container
HRZ.hrz
Slow Scan TeleVision
ICO.ico
Microsoft icon
ICON.icon
Microsoft icon
J2C.j2c
JPEG-2000 codestream
J2K.j2k
JPEG-2000 codestream
JNG.jng
JPEG Network Graphics
JP2.jp2
JPEG-2000 File Format Syntax
JPE.jpe
Joint Photographic Experts Group JFIF format
JPEG.jpeg
Joint Photographic Experts Group JFIF format
JPG.jpg
Joint Photographic Experts Group JFIF format
JPM.jpm
JPEG-2000 File Format Syntax
JPS.jps
Joint Photographic Experts Group JPS format
JPT.jpt
JPEG-2000 File Format Syntax
JXL.jxl
JPEG XL image
MAP.map
Multi-resolution Seamless Image Database (MrSID)
MAT.mat
MATLAB level 5 image format
PAL.pal
Palm pixmap
PALM.palm
Palm pixmap
PAM.pam
Common 2-dimensional bitmap format
PBM.pbm
Portable bitmap format (black and white)
PCD.pcd
Photo CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
Palm Database ImageViewer Format
PDF.pdf
Portable Document Format
PDFA.pdfa
Portable Document Archive Format
PFM.pfm
Portable float format
PGM.pgm
Portable graymap format (gray scale)
PGX.pgx
JPEG 2000 uncompressed format
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
Joint Photographic Experts Group JFIF format
PNG.png
Portable Network Graphics
PNG00.png00
PNG inheriting bit-depth, color-type from original image
PNG24.png24
Opaque or binary transparent 24-bit RGB (zlib 1.2.11)
PNG32.png32
Opaque or binary transparent 32-bit RGBA
PNG48.png48
Opaque or binary transparent 48-bit RGB
PNG64.png64
Opaque or binary transparent 64-bit RGBA
PNG8.png8
Opaque or binary transparent 8-bit indexed
PNM.pnm
Portable anymap
PPM.ppm
Portable pixmap format (color)
PS.ps
Adobe PostScript file
PSB.psb
Adobe Large Document Format
PSD.psd
Adobe Photoshop bitmap
RGB.rgb
Raw red, green, and blue samples
RGBA.rgba
Raw red, green, blue, and alpha samples
RGBO.rgbo
Raw red, green, blue, and opacity samples
SIX.six
DEC SIXEL Graphics Format
SUN.sun
Sun Rasterfile
SVG.svg
Scalable Vector Graphics
TIFF.tiff
Tagged Image File Format
VDA.vda
Truevision Targa image
VIPS.vips
VIPS image
WBMP.wbmp
Wireless Bitmap (level 0) image
WEBP.webp
WebP Image Format
YUV.yuv
CCIR 601 4:1:1 or 4:2:2
Frequently asked questions
How does this work?
This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.
How long does it take to convert a file?
Conversions start instantly, and most files are converted in under a second. Larger files may take longer.
What happens to my files?
Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.
What file types can I convert?
We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.
How much does this cost?
This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.
Can I convert multiple files at once?
Yes! You can convert as many files as you want at once. Just select multiple files when you add them.