OCR bất kỳ J2K nào

Không giới hạn công việc. Kích thước tệp lên đến 2.5GB. Miễn phí, mãi mãi.

Tất cả địa phương

Trình chuyển đổi của chúng tôi chạy trong trình duyệt của bạn, vì vậy chúng tôi không bao giờ nhìn thấy dữ liệu của bạn.

Cực nhanh

Không cần tải tệp của bạn lên máy chủ—quá trình chuyển đổi bắt đầu ngay lập tức.

An toàn theo mặc định

'Khác với các trình chuyển đổi khác, tệp của bạn không bao giờ được tải lên chúng tôi.'

OCR, hoặc Optical Character Recognition, là công nghệ được sử dụng để chuyển đổi các loại tài liệu khác nhau, chẳng hạn như tài liệu giấy đã quét, tệp PDF hoặc hình ảnh chụp bằng máy ảnh kỹ thuật số, thành dữ liệu có thể chỉnh sửa và tìm kiếm.

Trong giai đoạn đầu của OCR, một hình ảnh của văn bản tài liệu được quét. Điều này có thể là một bức ảnh hoặc một tài liệu đã quét. Mục đích của giai đoạn này là để sao chép số liệu của tài liệu, thay vì yêu cầu chuyển dịch thủ công. Ngoài ra, quá trình số hóa này cũng có thể giúp tăng tuổi thọ của các vật liệu bởi vì nó có thể giảm thiểu việc xử lý nguồn lực dễ vỡ.

Một khi tài liệu được số hóa, phần mềm OCR phân tách hình ảnh thành các ký tự cá nhân để nhận dạng. Đây được gọi là quá trình phân đoạn. Phân đoạn phá tài liệu thành dòng, từ, và cuối cùng là ký tự cá nhân. Việc phân chia này là một quá trình phức tạp do nhiều yếu tố liên quan -- kiểu chữ khác nhau, kích thước văn bản khác nhau, và việc căn chỉnh văn bản khác nhau, chỉ để nêu một vài.

Sau khi phân đoạn, thuật toán OCR sau đó sử dụng nhận dạng mẫu để xác định mỗi ký tự cá nhân. Đối với mỗi ký tự, thuật toán sẽ so sánh nó với cơ sở dữ liệu của các hình dạng ký tự. Kết quả khớp gần nhất sau đó được chọn là danh tính của ký tự. Trong nhận dạng đặc trưng, một hình thức OCR nâng cao hơn, thuật toán không chỉ xem xét hình dạng mà còn xem xét các đường và đường cong trong một mẫu.

OCR có nhiều ứng dụng thực tế - từ việc số hóa tài liệu in, kích hoạt các dịch vụ văn bản-tiếng nói, tự động hóa các quy trình nhập dữ liệu, đến việc hỗ trợ người dùng khiếm thị tương tác tốt hơn với văn bản. Tuy nhiên, đáng chú ý là quá trình OCR không phải lúc nào cũng hoàn hảo và có thể mắc lỗi, đặc biệt khi xử lý tài liệu độ phân giải thấp, phông chữ phức tạp, hoặc văn bản in không rõ nét. Do đó, độ chính xác của hệ thống OCR có sự khác biệt rõ ràng tùy thuộc vào chất lượng của tài liệu gốc và chi tiết của phần mềm OCR được sử dụng.

OCR là công nghệ then chốt trong thực hành trích xuất và số hóa dữ liệu hiện đại. Nó tiết kiệm thời gian và nguồn lực đáng kể bằng cách giảm bớt nhu cầu nhập dữ liệu thủ công và cung cấp một cách tiếp cận đáng tin cậy, hiệu quả để chuyển đổi tài liệu vật lý thành định dạng số.

Câu hỏi thường gặp

OCR là gì?

Optical Character Recognition (OCR) là một công nghệ được sử dụng để chuyển đổi các loại tài liệu khác nhau, như tài liệu giấy đã quét, tệp PDF hoặc hình ảnh được chụp bằng máy ảnh số, thành dữ liệu có thể chỉnh sửa và tìm kiếm.

OCR hoạt động như thế nào?

OCR hoạt động bằng cách quét hình ảnh hoặc tài liệu đầu vào, phân đoạn hình ảnh thành các ký tự riêng lẻ, và so sánh từng ký tự với cơ sở dữ liệu hình dạng ký tự bằng cách sử dụng nhận dạng mô hình hoặc nhận dạng đặc trưng.

Ứng dụng thực tế của OCR là gì?

OCR được sử dụng trong nhiều lĩnh vực và ứng dụng, bao gồm số hóa tài liệu in, kích hoạt các dịch vụ văn bản thành giọng nói, tự động hóa quá trình nhập dữ liệu, và hỗ trợ người dùng khiếm thị tương tác tốt hơn với văn bản.

OCR luôn chính xác 100% không?

Mặc dù đã có những tiến bộ vượt bậc trong công nghệ OCR, nhưng nó không phải lúc nào cũng hoàn hảo. Độ chính xác có thể thay đổi tùy thuộc vào chất lượng của tài liệu gốc và chi tiết của phần mềm OCR đang được sử dụng.

OCR có nhận dạng được chữ viết tay không?

Mặc dù OCR chủ yếu được thiết kế cho văn bản in, một số hệ thống OCR tiên tiến cũng có thể nhận dạng được chữ viết tay rõ ràng, nhất quán. Tuy nhiên, nhận dạng chữ viết tay thường kém chính xác hơn do sự biến đổi lớn trong các kiểu viết của mỗi người.

OCR có xử lý được nhiều ngôn ngữ không?

Có, nhiều hệ thống phần mềm OCR có thể nhận dạng được nhiều ngôn ngữ. Tuy nhiên, điều quan trọng là phải đảm bảo rằng ngôn ngữ cụ thể đó được hỗ trợ bởi phần mềm bạn đang sử dụng.

Sự khác biệt giữa OCR và ICR là gì?

OCR là viết tắt của Optical Character Recognition và được sử dụng để nhận dạng văn bản in, trong khi ICR, hoặc Intelligent Character Recognition, tiên tiến hơn và được sử dụng để nhận dạng văn bản viết tay.

OCR hoạt động với bất kỳ phông chữ và kích cỡ văn bản nào không?

OCR hoạt động tốt nhất với các phông chữ rõ ràng, dễ đọc và kích cỡ văn bản chuẩn. Mặc dù nó có thể hoạt động với các phông chữ và kích cỡ khác nhau, độ chính xác thường giảm khi đối phó với phông chữ không thông thường hoặc kích cỡ văn bản rất nhỏ.

Những hạn chế của công nghệ OCR là gì?

OCR có thể gặp khó khăn với các tài liệu độ phân giải thấp, phông chữ phức tạp, văn bản in kém, chữ viết tay, và các tài liệu có nền gây ra sự can thiệp với văn bản. Ngoài ra, mặc dù nó có thể hoạt động với nhiều ngôn ngữ, nó có thể không bao phủ hoàn hảo mọi ngôn ngữ.

OCR có quét được văn bản màu hoặc nền màu không?

Có, OCR có thể quét văn bản màu và nền màu, mặc dù nó thường hiệu quả hơn với các sự kết hợp màu đối lập cao, như văn bản đen trên nền trắng. Độ chính xác có thể giảm khi màu văn bản và màu nền không có đủ độ tương phản.

Định dạng J2K là gì?

Dòng mã JPEG-2000

JPEG 2000, thường được gọi là J2K, là một tiêu chuẩn nén hình ảnh và hệ thống mã hóa được ủy ban Joint Photographic Experts Group tạo ra vào năm 2000 với mục đích thay thế tiêu chuẩn JPEG ban đầu. Tiêu chuẩn này được phát triển để giải quyết một số hạn chế của tiêu chuẩn JPEG ban đầu và cung cấp một tập hợp các tính năng mới ngày càng được yêu cầu cho nhiều ứng dụng khác nhau. JPEG 2000 không chỉ là một tiêu chuẩn duy nhất mà là một bộ tiêu chuẩn, được bao gồm trong họ JPEG 2000 (ISO/IEC 15444).

Một trong những lợi thế chính của JPEG 2000 so với định dạng JPEG ban đầu là việc sử dụng biến đổi wavelet thay vì biến đổi cosine rời rạc (DCT). Biến đổi wavelet cho phép tỷ lệ nén cao hơn mà không có cùng mức độ hiện vật có thể nhìn thấy trong hình ảnh JPEG. Điều này đặc biệt có lợi cho các ứng dụng hình ảnh có độ phân giải cao và chất lượng cao, chẳng hạn như hình ảnh vệ tinh, hình ảnh y tế, phim kỹ thuật số và lưu trữ lưu trữ, trong đó chất lượng hình ảnh là tối quan trọng.

JPEG 2000 hỗ trợ cả nén không mất dữ liệu và nén mất dữ liệu trong một kiến trúc nén duy nhất. Nén không mất dữ liệu đạt được bằng cách sử dụng biến đổi wavelet có thể đảo ngược, đảm bảo rằng dữ liệu hình ảnh gốc có thể được tái tạo hoàn hảo từ hình ảnh đã nén. Mặt khác, nén mất dữ liệu sử dụng biến đổi wavelet không thể đảo ngược để đạt được tỷ lệ nén cao hơn bằng cách loại bỏ một số thông tin ít quan trọng hơn trong hình ảnh.

Một tính năng quan trọng khác của JPEG 2000 là hỗ trợ truyền hình ảnh tiến bộ, còn được gọi là giải mã tiến bộ. Điều này có nghĩa là hình ảnh có thể được giải mã và hiển thị ở độ phân giải thấp hơn và tăng dần lên độ phân giải đầy đủ khi có nhiều dữ liệu hơn. Điều này đặc biệt hữu ích cho các ứng dụng bị giới hạn băng thông, chẳng hạn như duyệt web hoặc ứng dụng di động, trong đó việc hiển thị nhanh chóng phiên bản chất lượng thấp hơn của hình ảnh và cải thiện chất lượng khi nhận được nhiều dữ liệu hơn là có lợi.

JPEG 2000 cũng giới thiệu khái niệm về vùng quan tâm (ROI). Điều này cho phép các phần khác nhau của hình ảnh được nén ở các mức chất lượng khác nhau. Ví dụ, trong một tình huống hình ảnh y tế, vùng chứa tính năng chẩn đoán có thể được nén không mất dữ liệu hoặc ở chất lượng cao hơn các vùng xung quanh. Kiểm soát chất lượng có chọn lọc này có thể rất quan trọng trong các lĩnh vực mà một số phần của hình ảnh quan trọng hơn những phần khác.

Định dạng tệp cho hình ảnh JPEG 2000 là JP2, đây là định dạng được chuẩn hóa và có thể mở rộng bao gồm cả dữ liệu hình ảnh và siêu dữ liệu. Định dạng JP2 sử dụng phần mở rộng tệp .jp2 và có thể chứa nhiều thông tin, bao gồm thông tin không gian màu, mức độ phân giải và thông tin về quyền sở hữu trí tuệ. Ngoài ra, JPEG 2000 hỗ trợ định dạng JPM (cho hình ảnh hợp thành, chẳng hạn như tài liệu chứa cả văn bản và hình ảnh) và định dạng MJ2 cho chuỗi chuyển động, tương tự như tệp video.

JPEG 2000 sử dụng một lược đồ mã hóa tinh vi được gọi là EBCOT (Mã hóa khối nhúng với cắt bớt tối ưu). EBCOT cung cấp một số lợi thế, bao gồm khả năng phục hồi lỗi được cải thiện và khả năng tinh chỉnh nén để đạt được sự cân bằng mong muốn giữa chất lượng hình ảnh và kích thước tệp. Thuật toán EBCOT chia hình ảnh thành các khối nhỏ, được gọi là khối mã, và mã hóa từng khối một cách độc lập. Điều này cho phép cô lập lỗi cục bộ trong trường hợp dữ liệu bị hỏng và tạo điều kiện truyền hình ảnh tiến bộ.

Việc xử lý không gian màu trong JPEG 2000 linh hoạt hơn so với tiêu chuẩn JPEG ban đầu. JPEG 2000 hỗ trợ nhiều không gian màu, bao gồm thang độ xám, RGB, YCbCr và các không gian màu khác, cũng như nhiều độ sâu bit, từ hình ảnh nhị phân lên đến 16 bit cho mỗi thành phần hoặc cao hơn. Sự linh hoạt này làm cho JPEG 2000 phù hợp với nhiều ứng dụng khác nhau và đảm bảo rằng nó có thể đáp ứng nhu cầu của các công nghệ hình ảnh khác nhau.

JPEG 2000 cũng bao gồm các tính năng bảo mật mạnh mẽ, chẳng hạn như khả năng bao gồm mã hóa và đánh dấu hình mờ kỹ thuật số trong tệp. Điều này đặc biệt quan trọng đối với các ứng dụng mà bảo vệ bản quyền hoặc xác thực nội dung là mối quan tâm. Phần JPSEC (Bảo mật JPEG 2000) của tiêu chuẩn nêu rõ các tính năng bảo mật này, cung cấp một khuôn khổ để phân phối hình ảnh an toàn.

Một trong những thách thức với JPEG 2000 là nó đòi hỏi nhiều tính toán hơn so với tiêu chuẩn JPEG ban đầu. Độ phức tạp của biến đổi wavelet và lược đồ mã hóa EBCOT có nghĩa là việc mã hóa và giải mã hình ảnh JPEG 2000 yêu cầu nhiều sức mạnh xử lý hơn. Về mặt lịch sử, điều này đã hạn chế việc áp dụng nó trong các thiết bị điện tử tiêu dùng và ứng dụng web, nơi chi phí tính toán có thể là một yếu tố quan trọng. Tuy nhiên, khi sức mạnh xử lý tăng lên và hỗ trợ phần cứng chuyên dụng trở nên phổ biến hơn, thì hạn chế này đã trở nên ít quan trọng hơn.

Mặc dù có những ưu điểm, JPEG 2000 vẫn chưa được áp dụng rộng rãi so với định dạng JPEG ban đầu. Điều này một phần là do tính phổ biến của định dạng JPEG và hệ sinh thái phần mềm và phần cứng rộng lớn hỗ trợ định dạng này. Ngoài ra, các vấn đề về cấp phép và bằng sáng chế xung quanh JPEG 2000 cũng cản trở việc áp dụng nó. Một số công nghệ được sử dụng trong JPEG 2000 đã được cấp bằng sáng chế và nhu cầu quản lý giấy phép cho các bằng sáng chế này khiến nó trở nên kém hấp dẫn hơn đối với một số nhà phát triển và doanh nghiệp.

Về kích thước tệp, các tệp JPEG 2000 thường nhỏ hơn các tệp JPEG có chất lượng tương đương. Điều này là do các thuật toán nén hiệu quả hơn được sử dụng trong JPEG 2000, có thể giảm hiệu quả hơn sự dư thừa và không liên quan trong dữ liệu hình ảnh. Tuy nhiên, sự khác biệt về kích thước tệp có thể thay đổi tùy thuộc vào nội dung của hình ảnh và các cài đặt được sử dụng để nén. Đối với những hình ảnh có nhiều chi tiết nhỏ hoặc mức độ nhiễu cao, khả năng nén vượt trội của JPEG 2000 có thể tạo ra các tệp nhỏ hơn đáng kể.

JPEG 2000 cũng hỗ trợ ghép hình, chia hình ảnh thành các ô nhỏ hơn được mã hóa độc lập. Điều này có thể hữu ích cho những hình ảnh rất lớn, chẳng hạn như những hình ảnh được sử dụng trong hình ảnh vệ tinh hoặc ứng dụng lập bản đồ, vì nó cho phép mã hóa, giải mã và xử lý hình ảnh hiệu quả hơn. Người dùng có thể truy cập và giải mã từng ô riêng lẻ mà không cần phải xử lý toàn bộ hình ảnh, điều này có thể tiết kiệm bộ nhớ và yêu cầu xử lý.

Việc chuẩn hóa JPEG 2000 cũng bao gồm các quy định về xử lý siêu dữ liệu, đây là một khía cạnh quan trọng đối với các hệ thống lưu trữ và truy xuất. Định dạng JPX, một phần mở rộng của JP2, cho phép đưa vào siêu dữ liệu mở rộng, bao gồm các hộp XML và UUID, có thể lưu trữ bất kỳ loại thông tin siêu dữ liệu nào. Điều này làm cho JPEG 2000 trở thành một lựa chọn tốt cho các ứng dụng mà việc bảo toàn siêu dữ liệu là quan trọng, chẳng hạn như thư viện kỹ thuật số và bảo tàng.

Tóm lại, JPEG 2000 là một tiêu chuẩn nén hình ảnh tinh vi cung cấp nhiều lợi thế so với định dạng JPEG ban đầu, bao gồm tỷ lệ nén cao hơn, giải mã tiến bộ, vùng quan tâm và các tính năng bảo mật mạnh mẽ. Tính linh hoạt của nó về không gian màu và độ sâu bit, cũng như hỗ trợ siêu dữ liệu, làm cho nó phù hợp với nhiều ứng dụng chuyên nghiệp. Tuy nhiên, độ phức tạp về tính toán và các vấn đề về bằng sáng chế ban đầu đã hạn chế việc áp dụng rộng rãi của nó. Mặc dù vậy, JPEG 2000 vẫn tiếp tục là định dạng được lựa chọn trong các ngành mà chất lượng hình ảnh và bộ tính năng quan trọng hơn hiệu quả tính toán hoặc khả năng tương thích rộng.

Định dạng được hỗ trợ

AAI.aai

Hình ảnh Dune AAI

AI.ai

Adobe Illustrator CS2

AVIF.avif

Định dạng tệp hình ảnh AV1

AVS.avs

Hình ảnh X AVS

BAYER.bayer

Hình ảnh Bayer thô

BMP.bmp

Hình ảnh bitmap Microsoft Windows

CIN.cin

Tệp hình ảnh Cineon

CLIP.clip

Mặt nạ cắt hình ảnh

CMYK.cmyk

Mẫu thô màu xanh lam, đỏ mạnh, vàng và đen

CMYKA.cmyka

Mẫu thô màu xanh lam, đỏ mạnh, vàng, đen và alpha

CUR.cur

Biểu tượng Microsoft

DCX.dcx

ZSoft IBM PC Paintbrush đa trang

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

Hình ảnh SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Định dạng tài liệu di động được đóng gói

EPI.epi

Định dạng trao đổi PostScript được đóng gói của Adobe

EPS.eps

PostScript được đóng gói của Adobe

EPSF.epsf

PostScript được đóng gói của Adobe

EPSI.epsi

Định dạng trao đổi PostScript được đóng gói của Adobe

EPT.ept

PostScript được đóng gói với xem trước TIFF

EPT2.ept2

PostScript Level II được đóng gói với xem trước TIFF

EXR.exr

Hình ảnh phạm vi động cao (HDR)

FARBFELD.ff

Farbfeld

FF.ff

Farbfeld

FITS.fits

Hệ thống vận chuyển hình ảnh linh hoạt

GIF.gif

Định dạng trao đổi đồ họa CompuServe

GIF87.gif87

Định dạng trao đổi đồ họa CompuServe (phiên bản 87a)

GROUP4.group4

Thô CCITT Group4

HDR.hdr

Hình ảnh phạm vi động cao

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Biểu tượng Microsoft

ICON.icon

Biểu tượng Microsoft

IPL.ipl

Hình ảnh vị trí IP2

J2C.j2c

Dòng mã JPEG-2000

J2K.j2k

Dòng mã JPEG-2000

JNG.jng

Đồ họa mạng JPEG

JP2.jp2

Cú pháp định dạng tệp JPEG-2000

JPC.jpc

Dòng mã JPEG-2000

JPE.jpe

Định dạng JFIF của Nhóm chuyên gia hình ảnh liên hợp

JPEG.jpeg

Định dạng JFIF của Nhóm chuyên gia hình ảnh liên hợp

JPG.jpg

Định dạng JFIF của Nhóm chuyên gia hình ảnh liên hợp

JPM.jpm

Cú pháp định dạng tệp JPEG-2000

JPS.jps

Định dạng JPS của Nhóm chuyên gia hình ảnh liên hợp

JPT.jpt

Cú pháp định dạng tệp JPEG-2000

JXL.jxl

Hình ảnh JPEG XL

MAP.map

Cơ sở dữ liệu hình ảnh liền mạch đa phân giải (MrSID)

MAT.mat

Định dạng hình ảnh MATLAB level 5

PAL.pal

Pixmap Palm

PALM.palm

Pixmap Palm

PAM.pam

Định dạng bitmap 2 chiều phổ biến

PBM.pbm

Định dạng bitmap di động (đen và trắng)

PCD.pcd

CD Ảnh

PCDS.pcds

CD Ảnh

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Định dạng ImageViewer cơ sở dữ liệu Palm

PDF.pdf

Định dạng tài liệu di động

PDFA.pdfa

Định dạng lưu trữ tài liệu di động

PFM.pfm

Định dạng float di động

PGM.pgm

Định dạng graymap di động (xám)

PGX.pgx

Định dạng không nén JPEG 2000

PICON.picon

Biểu tượng cá nhân

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Định dạng JFIF của Nhóm chuyên gia nhiếp ảnh liên hiệp

PNG.png

Đồ họa mạng di động

PNG00.png00

PNG kế thừa độ sâu bit, loại màu từ hình ảnh gốc

PNG24.png24

RGB 24 bit trong suốt hoặc nhị phân (zlib 1.2.11)

PNG32.png32

RGBA 32 bit trong suốt hoặc nhị phân

PNG48.png48

RGB 48 bit trong suốt hoặc nhị phân

PNG64.png64

RGBA 64 bit trong suốt hoặc nhị phân

PNG8.png8

8-bit chỉ mục trong suốt hoặc nhị phân

PNM.pnm

Anymap di động

PPM.ppm

Định dạng pixmap di động (màu)

PS.ps

Tệp Adobe PostScript

PSB.psb

Định dạng tài liệu lớn Adobe

PSD.psd

Bitmap Adobe Photoshop

RGB.rgb

Mẫu thô đỏ, xanh lá cây, và xanh dương

RGBA.rgba

Mẫu thô đỏ, xanh lá cây, xanh dương, và alpha

RGBO.rgbo

Mẫu thô đỏ, xanh lá cây, xanh dương, và độ mờ

SIX.six

Định dạng đồ họa DEC SIXEL

SUN.sun

Rasterfile Sun

SVG.svg

Đồ họa Vector có thể mở rộng

SVGZ.svgz

Đồ họa Vector có thể mở rộng nén

TIFF.tiff

Định dạng tệp hình ảnh được gắn thẻ

VDA.vda

Hình ảnh Truevision Targa

VIPS.vips

Hình ảnh VIPS

WBMP.wbmp

Hình ảnh Bitmap không dây (cấp độ 0)

WEBP.webp

Định dạng hình ảnh WebP

YUV.yuv

CCIR 601 4:1:1 hoặc 4:2:2

Câu hỏi thường gặp

Cách hoạt động của nó như thế nào?

Trình chuyển đổi này hoạt động hoàn toàn trong trình duyệt của bạn. Khi bạn chọn một tệp, nó được đọc vào bộ nhớ và chuyển đổi thành định dạng đã chọn. Bạn sau đó có thể tải xuống tệp đã chuyển đổi.

Mất bao lâu để chuyển đổi một tệp?

Quá trình chuyển đổi bắt đầu ngay lập tức, và hầu hết các tệp được chuyển đổi trong dưới một giây. Các tệp lớn hơn có thể mất thời gian lâu hơn.

Chuyện gì xảy ra với tệp của tôi?

Tệp của bạn không bao giờ được tải lên máy chủ của chúng tôi. Chúng được chuyển đổi trong trình duyệt của bạn, và sau đó tệp đã chuyển đổi được tải xuống. Chúng tôi không bao giờ nhìn thấy tệp của bạn.

Loại tệp nào tôi có thể chuyển đổi?

Chúng tôi hỗ trợ chuyển đổi giữa tất cả các định dạng hình ảnh, bao gồm JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, và nhiều hơn nữa.

Cần phải trả bao nhiêu để sử dụng dịch vụ này?

Trình chuyển đổi này hoàn toàn miễn phí, và sẽ mãi mãi miễn phí. Vì nó chạy trong trình duyệt của bạn, chúng tôi không phải trả tiền cho máy chủ, vì vậy chúng tôi không cần thu phí từ bạn.

Tôi có thể chuyển đổi nhiều tệp cùng một lúc không?

Có! Bạn có thể chuyển đổi bao nhiêu tệp bạn muốn cùng một lúc. Chỉ cần chọn nhiều tệp khi bạn thêm chúng.