View PALs
Drag and drop or click to select.
Private and secure
Everything happens in your browser. Your files never touch our servers.
Blazing fast
No uploading, no waiting. Convert the moment you drop a file.
Actually free
No account required. No hidden costs. No file size tricks.
What is the PAL format?
Palm pixmap
The PAL image format, not to be confused with the television broadcast standard (Phase Alternating Line), is a color palette file format used in various applications, particularly in the realm of computer graphics and digital art. A PAL file typically stores a collection of colors that can be applied to indexed images or used to maintain consistency across different digital assets. The format is especially useful when dealing with 8-bit graphics, where the number of colors is limited to 256, and precise control over the color palette is necessary for the desired visual outcome.
The structure of a PAL file is relatively simple, consisting of a header that specifies the format and version, followed by the palette data itself. The palette data is an array of color entries, where each entry defines a single color. In most cases, each color is represented by three bytes, corresponding to the red, green, and blue (RGB) components of the color. Some variations of the PAL format may include an additional byte for an alpha channel, which represents the transparency level of the color, although this is less common.
The header of a PAL file is crucial as it contains information that helps the software interpret the rest of the file correctly. It typically includes a signature or magic number that identifies the file as a PAL format, the version of the format, and sometimes the number of colors contained within the palette. The version information is important for ensuring compatibility with different software that may support different iterations of the PAL format.
After the header, the palette data is organized sequentially. Each color entry is usually 3 bytes in length, with one byte for each of the primary color components (red, green, and blue). The values for each component range from 0 to 255, allowing for a total of 16,777,216 possible colors. However, since PAL files are often used with indexed images, only a subset of these colors is included in the palette, typically up to 256 colors.
The indexed image format works by mapping each pixel in an image to a color in the palette, rather than storing the color information directly within the pixel data. This is done using an index, which is a number that corresponds to the position of a color within the palette. For example, an index of 0 would refer to the first color in the palette, an index of 1 would refer to the second color, and so on. This method of color referencing allows for significant file size reduction, which was particularly important in the early days of computing when storage space and memory were limited.
One of the key benefits of using a PAL file is the ability to change the appearance of an indexed image by simply altering the palette, without the need to modify the image data itself. This can be used to create different visual themes, simulate different lighting conditions, or perform color corrections. For example, in video games, the same sprite graphics can be reused with different palettes to represent various environments or to indicate changes in the game state, such as damage or power-ups.
The PAL format is also advantageous for ensuring consistency across multiple images or assets. By sharing a common palette, a set of images can be guaranteed to use the same set of colors, which is important for maintaining a cohesive look and feel. This is particularly useful in applications like animation, where multiple frames must look consistent when played in sequence, or in user interface design, where different elements need to match the overall color scheme of the application.
Despite its advantages, the PAL format has limitations due to its association with indexed color images. As display technology and graphics hardware have advanced, the need for indexed color and limited palettes has diminished. Modern graphics systems are capable of displaying millions of colors simultaneously, making the use of full-color images more practical and desirable. As a result, the use of PAL files has declined in favor of more versatile image formats that support true color, such as PNG or JPEG.
However, the PAL format still finds use in certain niche applications. For example, retro game development, pixel art, and other artistic endeavors that intentionally limit the color palette for stylistic reasons may utilize PAL files. Additionally, some legacy systems and software that were designed with the PAL format in mind may still require its use for compatibility purposes.
Creating and editing PAL files can be done using specialized software tools that are designed for working with palettes and indexed images. These tools allow artists and developers to create custom palettes by selecting colors either manually or from an existing image. They can also manipulate the palette by reordering colors, adjusting color values, and importing or exporting palettes in various formats, including PAL.
When working with PAL files, it's important to be aware of the specific requirements of the target platform or software. Some systems may have restrictions on the number of colors that can be used, or they may require the palette to be organized in a particular way. Additionally, the way colors are interpreted can vary between systems due to differences in color spaces or gamma settings, which can affect the final appearance of the colors when displayed.
In terms of file format specifications, the PAL format is not standardized in the same way that formats like PNG or JPEG are. This means that there can be variations in how PAL files are structured and interpreted by different software. Some applications may use proprietary extensions or variations of the PAL format, which can lead to compatibility issues when exchanging files between different programs. It's important to ensure that the software being used to create or edit PAL files is compatible with the intended use case.
To address some of the limitations of the PAL format, extensions and alternatives have been developed. For example, the Adobe Color Table (.ACT) format is similar to PAL but is specifically designed for use with Adobe software. The Microsoft Palette (PAL) file format, used by Windows, is another variation that includes additional metadata for improved compatibility with Windows applications. These alternative formats offer similar functionality to the PAL format but with better integration with specific software ecosystems.
In conclusion, the PAL image format is a simple yet powerful tool for managing color palettes in indexed images. While its use has declined with the advent of modern graphics technology, it remains relevant in specific contexts where color palette management is critical. Understanding the structure and application of PAL files is important for anyone working with legacy systems, retro-style graphics, or any project that requires precise control over a limited color palette. As with any file format, compatibility and standardization issues should be considered to ensure smooth workflow and interoperability between different software tools and platforms.
Supported formats
AAI.aai
AAI Dune image
AI.ai
Adobe Illustrator CS2
AVIF.avif
AV1 Image File Format
BAYER.bayer
Raw Bayer Image
BMP.bmp
Microsoft Windows bitmap image
CIN.cin
Cineon Image File
CLIP.clip
Image Clip Mask
CMYK.cmyk
Raw cyan, magenta, yellow, and black samples
CUR.cur
Microsoft icon
DCX.dcx
ZSoft IBM PC multi-page Paintbrush
DDS.dds
Microsoft DirectDraw Surface
DPX.dpx
SMTPE 268M-2003 (DPX 2.0) image
DXT1.dxt1
Microsoft DirectDraw Surface
EPDF.epdf
Encapsulated Portable Document Format
EPI.epi
Adobe Encapsulated PostScript Interchange format
EPS.eps
Adobe Encapsulated PostScript
EPSF.epsf
Adobe Encapsulated PostScript
EPSI.epsi
Adobe Encapsulated PostScript Interchange format
EPT.ept
Encapsulated PostScript with TIFF preview
EPT2.ept2
Encapsulated PostScript Level II with TIFF preview
EXR.exr
High dynamic-range (HDR) image
FF.ff
Farbfeld
FITS.fits
Flexible Image Transport System
GIF.gif
CompuServe graphics interchange format
HDR.hdr
High Dynamic Range image
HEIC.heic
High Efficiency Image Container
HRZ.hrz
Slow Scan TeleVision
ICO.ico
Microsoft icon
ICON.icon
Microsoft icon
J2C.j2c
JPEG-2000 codestream
J2K.j2k
JPEG-2000 codestream
JNG.jng
JPEG Network Graphics
JP2.jp2
JPEG-2000 File Format Syntax
JPE.jpe
Joint Photographic Experts Group JFIF format
JPEG.jpeg
Joint Photographic Experts Group JFIF format
JPG.jpg
Joint Photographic Experts Group JFIF format
JPM.jpm
JPEG-2000 File Format Syntax
JPS.jps
Joint Photographic Experts Group JPS format
JPT.jpt
JPEG-2000 File Format Syntax
JXL.jxl
JPEG XL image
MAP.map
Multi-resolution Seamless Image Database (MrSID)
MAT.mat
MATLAB level 5 image format
PAL.pal
Palm pixmap
PALM.palm
Palm pixmap
PAM.pam
Common 2-dimensional bitmap format
PBM.pbm
Portable bitmap format (black and white)
PCD.pcd
Photo CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
Palm Database ImageViewer Format
PDF.pdf
Portable Document Format
PDFA.pdfa
Portable Document Archive Format
PFM.pfm
Portable float format
PGM.pgm
Portable graymap format (gray scale)
PGX.pgx
JPEG 2000 uncompressed format
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
Joint Photographic Experts Group JFIF format
PNG.png
Portable Network Graphics
PNG00.png00
PNG inheriting bit-depth, color-type from original image
PNG24.png24
Opaque or binary transparent 24-bit RGB (zlib 1.2.11)
PNG32.png32
Opaque or binary transparent 32-bit RGBA
PNG48.png48
Opaque or binary transparent 48-bit RGB
PNG64.png64
Opaque or binary transparent 64-bit RGBA
PNG8.png8
Opaque or binary transparent 8-bit indexed
PNM.pnm
Portable anymap
PPM.ppm
Portable pixmap format (color)
PS.ps
Adobe PostScript file
PSB.psb
Adobe Large Document Format
PSD.psd
Adobe Photoshop bitmap
RGB.rgb
Raw red, green, and blue samples
RGBA.rgba
Raw red, green, blue, and alpha samples
RGBO.rgbo
Raw red, green, blue, and opacity samples
SIX.six
DEC SIXEL Graphics Format
SUN.sun
Sun Rasterfile
SVG.svg
Scalable Vector Graphics
TIFF.tiff
Tagged Image File Format
VDA.vda
Truevision Targa image
VIPS.vips
VIPS image
WBMP.wbmp
Wireless Bitmap (level 0) image
WEBP.webp
WebP Image Format
YUV.yuv
CCIR 601 4:1:1 or 4:2:2
Frequently asked questions
How does this work?
This converter runs entirely in your browser. When you select a file, it is read into memory and converted to the selected format. You can then download the converted file.
How long does it take to convert a file?
Conversions start instantly, and most files are converted in under a second. Larger files may take longer.
What happens to my files?
Your files are never uploaded to our servers. They are converted in your browser, and the converted file is then downloaded. We never see your files.
What file types can I convert?
We support converting between all image formats, including JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, and more.
How much does this cost?
This converter is completely free, and will always be free. Because it runs in your browser, we don't have to pay for servers, so we don't need to charge you.
Can I convert multiple files at once?
Yes! You can convert as many files as you want at once. Just select multiple files when you add them.